Two types of genetic recombination events will be studied using defined in vitro systems and purified proteins derived from bacteria and yeast. The proteins to be studied are: 1) The FLP protein of the yeast 2 micron plasmid. This protein promotes a site-specific recombination event which results in the inversion of a segment of the 2 micron plasmid DNA relative to the rest of the plasmid. 2) The recA protein of E. coli. This protein plays a central role in homologous or general genetic recombination in bacteria. The long range goal of this project is to elucidate the chemical mechanisms by which these and similar proteins promote genetic recombination. The work will employ the full range of chemical, kinetic, physical, and genetic techniques available for biochemical analysis. The health relatedness of this work derives from the importance of genetic recombination in many basic biological processes. Especially important in this regard is the central role of genetic recombination events in the generation of antibody diversity and in transformation of mammalian cells by a number of DNA tumor viruses.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM032335-03
Application #
3281079
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1983-07-01
Project End
1986-06-30
Budget Start
1985-07-01
Budget End
1986-06-30
Support Year
3
Fiscal Year
1985
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
Earth Sciences/Resources
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Stanage, Tyler H; Page, Asher N; Cox, Michael M (2017) DNA flap creation by the RarA/MgsA protein of Escherichia coli. Nucleic Acids Res 45:2724-2735
Lewis, Jacob S; Spenkelink, Lisanne M; Jergic, Slobodan et al. (2017) Single-molecule visualization of fast polymerase turnover in the bacterial replisome. Elife 6:
Bakhlanova, Irina V; Dudkina, Alexandra V; Wood, Elizabeth A et al. (2016) DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype. PLoS One 11:e0154137
Jaszczur, Malgorzata; Bertram, Jeffrey G; Robinson, Andrew et al. (2016) Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry 55:2309-18
Ronayne, Erin A; Wan, Y C Serena; Boudreau, Beth A et al. (2016) P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality. PLoS Genet 12:e1005797
Leite, Wellington C; Galvão, Carolina W; Saab, Sérgio C et al. (2016) Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. PLoS One 11:e0159871
Chen, Stefanie H; Byrne-Nash, Rose T; Cox, Michael M (2016) Escherichia coli RadD Protein Functionally Interacts with the Single-stranded DNA-binding Protein. J Biol Chem 291:20779-86
Gruber, Angela J; Olsen, Tayla M; Dvorak, Rachel H et al. (2015) Function of the N-terminal segment of the RecA-dependent nuclease Ref. Nucleic Acids Res 43:1795-803
Robinson, Andrew; McDonald, John P; Caldas, Victor E A et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11:e1005482
Kim, Taejin; Chitteni-Pattu, Sindhu; Cox, Benjamin L et al. (2015) Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination. PLoS Genet 11:e1005278

Showing the most recent 10 out of 120 publications