Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM032703-12
Application #
2176704
Study Section
Molecular Cytology Study Section (CTY)
Project Start
1983-12-01
Project End
1997-11-30
Budget Start
1994-12-01
Budget End
1997-11-30
Support Year
12
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Darsow, T; Burd, C G; Emr, S D (1998) Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3p vacuolar t-SNARE. J Cell Biol 142:913-22
Gaynor, E C; Chen, C Y; Emr, S D et al. (1998) ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol Biol Cell 9:653-70
Gaynor, E C; Graham, T R; Emr, S D (1998) COPI in ER/Golgi and intra-Golgi transport: do yeast COPI mutants point the way? Biochim Biophys Acta 1404:33-51
Seaman, M N; Marcusson, E G; Cereghino, J L et al. (1997) Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 137:79-92
Horazdovsky, B F; Davies, B A; Seaman, M N et al. (1997) A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 8:1529-41
Burd, C G; Peterson, M; Cowles, C R et al. (1997) A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol Biol Cell 8:1089-104
Srinivasan, S; Seaman, M; Nemoto, Y et al. (1997) Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J Cell Biol 74:350-60
Cowles, C R; Odorizzi, G; Payne, G S et al. (1997) The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91:109-18
Darsow, T; Rieder, S E; Emr, S D (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517-29
Cowles, C R; Snyder, W B; Burd, C G et al. (1997) Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. EMBO J 16:2769-82

Showing the most recent 10 out of 48 publications