Viruses are among the best known and studied pathogens. They infect virtually every living organism from bacteria to man and are the subjects of intensive scientific investigations. As viruses are parasites of their hosts, the life cycle of any virus is inextricably tied to that of the host cell. Despite this dependence, all viruses share a number of essential tasks which they must accomplish for survival. A virus must find and recognize a cell in which it can replicate, release its genome into the cell, generate new viral components and assemble these components into precursors that mature into a stable progeny virion which is released from the host cell and transmitted to encounter a new host. Viruses accomplish these tasks in different ways as a result of adaptation to different cellular environments. Each task involves interactions between components within the context of the whole virion and hence requires the visualization of the entire structure at which the techniques of cryo- transmission electron microscopy (cryoTEM) and three-dimensional (3D) image reconstruction ('cryo-reconstruction') excel. We will exploit these techniques to study a diverse range of viruses, including those that infect mammals, insects, bacteria, and plants (including algae). Several studies funded by the current grant have illustrated the structural response of different viruses to the common tasks of the viral life cycle. This proposal involves continued as well as new studies that focus on structural investigations of viruses and virus complexes and dynamic events that lie beyond the current realm of crystallographic technology. The large number and extent of our studies are made possible through several fruitful collaborations which provide important correlative information from biochemical, genetic, immunological, and X-ray crystallographic experiments. Our analyses often combine information from 3D cryoEM data with available atomic models. The fitting of atomic models to cryoEM 3D data can reveal 'pseudo-atomic' resolution information about the orientation and binding sites of antibody and receptor molecules on viral capsid surfaces which can be tested and refined by molecular genetics experiments. Icosahedral as well as non-icosahedral viruses will be studied. These include representatives of several different virus families, all of which serve as excellent model systems for studying form and function: Reoviridae, Parvoviridae, Picornaviridae, Podoviridae, Geminiviridae, Phycodnaviridae, and Iridoviridae.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM033050-20
Application #
6625036
Study Section
Biophysical Chemistry Study Section (BBCB)
Program Officer
Deatherage, James F
Project Start
1983-06-01
Project End
2004-03-31
Budget Start
2002-12-01
Budget End
2004-03-31
Support Year
20
Fiscal Year
2003
Total Cost
$412,885
Indirect Cost
Name
Purdue University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Tan, Yong Zi; Aiyer, Sriram; Mietzsch, Mario et al. (2018) Sub-2?Å Ewald curvature corrected structure of an AAV2 capsid variant. Nat Commun 9:3628
Subramanian, Rohit H; Smith, Sarah J; Alberstein, Robert G et al. (2018) Self-Assembly of a Designed Nucleoprotein Architecture through Multimodal Interactions. ACS Cent Sci 4:1578-1586
Nibert, Max L (2017) Mitovirus UGA(Trp) codon usage parallels that of host mitochondria. Virology 507:96-100
Pittman, Nikéa; Misseldine, Adam; Geilen, Lorena et al. (2017) Atomic Resolution Structure of the Oncolytic Parvovirus LuIII by Electron Microscopy and 3D Image Reconstruction. Viruses 9:
Pyle, Jesse D; Keeling, Patrick J; Nibert, Max L (2017) Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 233:95-104
Mietzsch, Mario; Kailasan, Shweta; Garrison, Jamie et al. (2017) Structural Insights into Human Bocaparvoviruses. J Virol 91:
Vong, Minh; Ludington, Jacob G; Ward, Honorine D et al. (2017) Complete cryspovirus genome sequences from Cryptosporidium parvum isolate Iowa. Arch Virol 162:2875-2879
Depierreux, Delphine; Vong, Minh; Nibert, Max L (2016) Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae. Virus Res 217:115-24
Nibert, Max L; Pyle, Jesse D; Firth, Andrew E (2016) A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 498:201-208
Li, Zhihai; Yan, Xiaodong; Yu, Hai et al. (2016) The C-Terminal Arm of the Human Papillomavirus Major Capsid Protein Is Immunogenic and Involved in Virus-Host Interaction. Structure 24:874-85

Showing the most recent 10 out of 97 publications