The research plan is to continue at the molecular and genetic level an investigation of the regulation of two glycoproteins crucial to Dictyostelium development. One is a cAMP phosphodiesterase, which is induced by cAMP, and the other is an inhibitor of the phosphodiesterase, which is repressed by cAMP. The point of departure for the project is the cloning of both genes. Translational studies on the regulation of their mRNAs have already been done. Cloned genes will be used to determine structure, to assay mRNA production, and for comparison with other similarly or differently regulated genes. The role of cAMP binding proteins and protein kinases in Dictyostelium development will be determined by examining a novel class of cAMP sensitive mutations previously made in this laboratory. Structural gene mutations of the proteins will be isolate and used to select secondary mutations. Improvements in the genetic manipulation of Dictyostelium will be made. Developmentally regulated genes will be selected by complementation of yeast auxotrophs, as we have already done with URA1

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM033136-03
Application #
3282465
Study Section
Genetics Study Section (GEN)
Project Start
1983-07-01
Project End
1986-02-28
Budget Start
1985-03-01
Budget End
1986-02-28
Support Year
3
Fiscal Year
1985
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
Schools of Medicine
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10027
Tekinay, Turgay; Wu, Mary Y; Otto, Grant P et al. (2006) Function of the Dictyostelium discoideum Atg1 kinase during autophagy and development. Eukaryot Cell 5:1797-806
Otto, Grant P; Wu, Mary Y; Clarke, Margaret et al. (2004) Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol 51:63-72
Otto, Grant P; Wu, Mary Y; Kazgan, Nevzat et al. (2004) Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J Biol Chem 279:15621-9
Weening, Karin E; Wijk, Irene Verkerke-Van; Thompson, Christopher R et al. (2003) Contrasting activities of the aggregative and late PDSA promoters in Dictyostelium development. Dev Biol 255:373-82
Otto, Grant P; Wu, Mary Y; Kazgan, Nevzat et al. (2003) Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 278:17636-45
Pukatzki, Stefan; Kessin, Richard H; Mekalanos, John J (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A 99:3159-64
Ennis, H L; Dao, D N; Pukatzki, S U et al. (2000) Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type. Proc Natl Acad Sci U S A 97:3292-7
Dao, D N; Kessin, R H; Ennis, H L (2000) Developmental cheating and the evolutionary biology of Dictyostelium and Myxococcus. Microbiology 146 ( Pt 7):1505-12
Pukatzki, S; Ennis, H L; Kessin, R H (2000) A genetic interaction between a ubiquitin-like protein and ubiquitin-mediated proteolysis in Dictyostelium discoideum(1). Biochim Biophys Acta 1499:154-163
Pukatzki, S; Tordilla, N; Franke, J et al. (1998) A novel component involved in ubiquitination is required for development of Dictyostelium discoideum. J Biol Chem 273:24131-8

Showing the most recent 10 out of 27 publications