This proposal constitutes a resubmission of a competitive renewal of a research program to design and apply octahedral metal complexes to target DNA with site-specificity. We are focused primarily on metalloinsertors, bulky metal complexes that bind to single base mismatches in DNA with high specificity through a unique binding mode. We have shown crystallographically that in this novel insertion mode, the metal complex binds DNA from the minor groove side, inserting its bulky ligand into the base stack and ejecting the mismatched bases into the major groove. We have also shown that these complexes display remarkable cell selectivity in inhibiting cellular proliferation preferentially in mismatch repair-deficient cells. Importantly, cells deficient in mismatch repair are associated with cancerous transformation. We therefore propose the application of these complexes that bind mismatches as the basis for a completely new strategy to develop diagnostics and chemotherapeutics targeted selectively to cells deficient in mismatch repair. No other family of small molecules thus far offers this opportunity. We will prepare new luminescent mismatch- targeting agents as early cancer diagnostics using luminescent Ru analogues for specificity coupled to organic fluorophores for brightness through resonance energy transfer. We will extend the family of mismatches targeted to include the more stable guanine mismatches by functionalizing the Rh complexes for hydrogen bonding into guanine-containing mismatches. We will also prepare a new Rh scaffold for bifunctional conjugates. Structural studies will be conducted for new complexes bound to their target sites. Experiments to monitor and optimize cellular uptake on luminescent ruthenium analogues will be conducted using flow cytometry, confocal microscopy and mass spectrometry. We will examine a family of Ru and Rh complexes, where the ancillary ligands are systematically varied with charged, lipophilic and polar functionalities and with appended peptides. Studies will include nuclear-localizing peptides that contain a cleavable linker once in the cell. Biological experiments, focused on comparisons between matched cell lines deficient versus proficient in repair, will be carried out to characterize cellular responses. We intend to optimize the cell-selective response using the complexes prepared by (i) increasing DNA affinity for the full family of mismatches;(ii) increasing nuclear uptake;and (iii) coupling the complexes with other reactive agents. Bifunctional conjugates will be made with an oxaliplatin derivative and with functionalities containing radionuclides to establish a potent cytotoxic response that is selective for cells deficient in mismatch repair. We will also probe the biological mechanism responsible for the cell-specific antiproliferative effect we observe in the absence (and presence) of conjugated cytotoxic agents.

Public Health Relevance

A program to design and apply a new family of molecules that binds specifically to sites on the DNA helix that contain mismatched base pairs is proposed. In cells that have defective protein machinery that cannot repair these mispaired bases, mismatches and therefore mutations accumulate, leading to cancerous transformation. By targeting these mismatched base pairs, we therefore propose a selective strategy for the design of new early diagnostics of cancer and new chemotherapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM033309-29
Application #
8242690
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Anderson, Vernon
Project Start
1989-12-01
Project End
2015-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
29
Fiscal Year
2012
Total Cost
$378,032
Indirect Cost
$128,032
Name
California Institute of Technology
Department
Chemistry
Type
Schools of Engineering
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Boyle, Kelsey M; Barton, Jacqueline K (2018) A Family of Rhodium Complexes with Selective Toxicity toward Mismatch Repair-Deficient Cancers. J Am Chem Soc 140:5612-5624
Nano, Adela; Boynton, Adam N; Barton, Jacqueline K (2017) A Rhodium-Cyanine Fluorescent Probe: Detection and Signaling of Mismatches in DNA. J Am Chem Soc 139:17301-17304
Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F et al. (2017) Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells. Proc Natl Acad Sci U S A 114:6948-6953
Boynton, Adam N; Marcélis, Lionel; McConnell, Anna J et al. (2017) A Ruthenium(II) Complex as a Luminescent Probe for DNA Mismatches and Abasic Sites. Inorg Chem 56:8381-8389
Boynton, Adam N; Marcélis, Lionel; Barton, Jacqueline K (2016) [Ru(Me4phen)2dppz](2+), a Light Switch for DNA Mismatches. J Am Chem Soc 138:5020-3
Arnold, Anna R; Grodick, Michael A; Barton, Jacqueline K (2016) DNA Charge Transport: from Chemical Principles to the Cell. Cell Chem Biol 23:183-197
Boyle, Kelsey M; Barton, Jacqueline K (2016) Targeting DNA Mismatches with Rhodium Metalloinsertors. Inorganica Chim Acta 452:3-11
Weidmann, Alyson G; Barton, Jacqueline K (2015) A monofunctional platinum complex coordinated to a rhodium metalloinsertor selectively binds mismatched DNA in the minor groove. Inorg Chem 54:9626-36
Weidmann, Alyson G; Komor, Alexis C; Barton, Jacqueline K (2014) Targeted Chemotherapy with Metal Complexes. Comments Mod Chem A Comments Inorg Chem 34:114-123
Komor, Alexis C; Barton, Jacqueline K (2014) An unusual ligand coordination gives rise to a new family of rhodium metalloinsertors with improved selectivity and potency. J Am Chem Soc 136:14160-72

Showing the most recent 10 out of 82 publications