Structural and functional studies will be carried out in order to provide a molecular level understanding of the role of heme proteins in fundamental physiological processes, including respiration, metabolism, and the regulation of cellular responses. Special emphasis will be placed on the new class of heme sensor proteins. The signal transducers guanylate cyclase and CooA, and the heme-regulated enzyme cystathionine beta synthase, have been selected for detailed characterization and dynamical studies of protein conformational change. In addition, the determinants of metal ion insertion into heme will be studied by comparing the enzyme ferrochelatase with a set of catalytic antibodies that carry out the same reaction. Resonance Raman spectroscopy will be applied as a structural monitor of the heme group, and of its interaction with the surrounding protein and with exogenous ligands. Dynamical studies will utilize pulse-probe time-resolved resonance Raman spectroscopy on picosecond and longer time scales. Ab initio computation with current DFT techniques will be employed to extract maximum information from the spectra, and to provide insight into the molecular mechanisms of the heme-protein interactions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM033576-33
Application #
6574619
Study Section
Metallobiochemistry Study Section (BMT)
Program Officer
Whitmarsh, John
Project Start
1979-04-01
Project End
2006-12-31
Budget Start
2003-01-15
Budget End
2003-12-31
Support Year
33
Fiscal Year
2003
Total Cost
$300,814
Indirect Cost
Name
Princeton University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Spiro, Thomas G; Soldatova, Alexandra V; Balakrishnan, Gurusamy (2013) CO, NO and O2 as Vibrational Probes of Heme Protein Interactions. Coord Chem Rev 257:511-527
Kabil, Omer; Weeks, Colin L; Carballal, Sebastian et al. (2011) Reversible heme-dependent regulation of human cystathionine ýý-synthase by a flavoprotein oxidoreductase. Biochemistry 50:8261-3
Ibrahim, Mohammed; Derbyshire, Emily R; Marletta, Michael A et al. (2010) Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy. Biochemistry 49:3815-23
Soldatova, Alexandra V; Ibrahim, Mohammed; Olson, John S et al. (2010) New light on NO bonding in Fe(III) heme proteins from resonance Raman spectroscopy and DFT modeling. J Am Chem Soc 132:4614-25
Ibrahim, Mohammed; Derbyshire, Emily R; Soldatova, Alexandra V et al. (2010) Soluble guanylate cyclase is activated differently by excess NO and by YC-1: resonance Raman spectroscopic evidence. Biochemistry 49:4864-71
Weeks, Colin L; Singh, Sangita; Madzelan, Peter et al. (2009) Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. J Am Chem Soc 131:12809-16
Singh, Sangita; Madzelan, Peter; Stasser, Jay et al. (2009) Modulation of the heme electronic structure and cystathionine beta-synthase activity by second coordination sphere ligands: The role of heme ligand switching in redox regulation. J Inorg Biochem 103:689-97
Derbyshire, Emily R; Gunn, Alexander; Ibrahim, Mohammed et al. (2008) Characterization of two different five-coordinate soluble guanylate cyclase ferrous-nitrosyl complexes. Biochemistry 47:3892-9
Xu, Changliang; Ibrahim, Mohammed; Spiro, Thomas G (2008) DFT analysis of axial and equatorial effects on heme-CO vibrational modes: applications to CooA and H-NOX heme sensor proteins. Biochemistry 47:2379-87
Spiro, Thomas (2008) A twist on heme signaling. ACS Chem Biol 3:673-5

Showing the most recent 10 out of 53 publications