The research combines computer simulation (energy optimization and normal mode analysis at the level of neighboring base pairs) with new developments in the theory of elastic rods to examine the configurations and properties of supercoiled DNA, a topologically constrained form of the double helix subject to higher-order folding and compensatory strand twisting. Sequence-dependent features of the long, threadlike polymer are incorporated in the theory of elastic rods and treated by numerical simulations. By combining analytical studies with computer simulations, we obtain complementary information and have a series of built-in checks and balances for assessing the significance of our findings. The computational results stimulate new theoretical developments, which in turn can be used to assess the validity of the calculations. The effects of the polyelectrolyte backbone and local chemical environment are treated implicitly with knowledge-based potentials extracted from high resolution structures of double helical DNA and, in representative cases, with explicit treatment of electrostatic forces. Our immediate goal is to describe chain configuration and properties in terms of realistic molecular models. The proposed studies may clarify the role of primary chemical features (base sequence, sugar-phosphate backbone) and ligand binding (proteins, drugs) on the overall folding of the double helix.
We aim to develop an accurate and comprehensive model of the configurational properties of the DNA loops tethered to the Lac repressor-operator assembly with the possibility of learning new details about the role of DNA structure in the regulation of transcription. A second goal is to uncover structural details of supercoil-induced transitions of DNA, such as the helical unwinding implicated in biological processes. Among the scientific issues to be addressed are: (1) the role of sequence-dependent local structure and specific protein conformation on the global features of supercoiled chains; (2) the role of sequence and ligand binding on large-scale configurational transitions of spatially constrained DNA; (3) the competing effects of multiple proteins on the shape and deformability of the supercoiled duplex; (4) the interplay of local and global structure in supercoiling dynamics; (5) the effect of ionic conditions on loop configuration.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM034809-19
Application #
6729086
Study Section
Molecular and Cellular Biophysics Study Section (BBCA)
Program Officer
Wehrle, Janna P
Project Start
1985-08-01
Project End
2006-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
19
Fiscal Year
2004
Total Cost
$194,375
Indirect Cost
Name
Rutgers University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001912864
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Xu, Fei; Zheng, Hongning; Clauvelin, Nicolas et al. (2017) Parallels between DNA and collagen - comparing elastic models of the double and triple helix. Sci Rep 7:12802
Nizovtseva, Ekaterina V; Todolli, Stefjord; Olson, Wilma K et al. (2017) Towards quantitative analysis of gene regulation by enhancers. Epigenomics 9:1219-1231
Todolli, Stefjord; Perez, Pamela J; Clauvelin, Nicolas et al. (2017) Contributions of Sequence to the Higher-Order Structures of DNA. Biophys J 112:416-426
Nizovtseva, Ekaterina V; Clauvelin, Nicolas; Todolli, Stefjord et al. (2017) Nucleosome-free DNA regions differentially affect distant communication in chromatin. Nucleic Acids Res 45:3059-3067
Perez, Pamela J; Olson, Wilma K (2016) Insights into Genome Architecture Deduced from the Properties of Short Lac Repressor-mediated DNA Loops. Biophys Rev 8:135-144
Lu, Xiang-Jun; Bussemaker, Harmen J; Olson, Wilma K (2015) DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res 43:e142
Clauvelin, N; Lo, P; Kulaeva, O I et al. (2015) Nucleosome positioning and composition modulate in silico chromatin flexibility. J Phys Condens Matter 27:064112
Wei, Juan; Czapla, Luke; Grosner, Michael A et al. (2014) DNA topology confers sequence specificity to nonspecific architectural proteins. Proc Natl Acad Sci U S A 111:16742-7
Yusufaly, Tahir I; Li, Yun; Singh, Gautam et al. (2014) Arginine-phosphate salt bridges between histones and DNA: intermolecular actuators that control nucleosome architecture. J Chem Phys 141:165102
Clauvelin, Nicolas; Olson, Wilma K; Tobias, Irwin (2014) Effect of the boundary conditions and influence of the rotational inertia on the vibrational modes of an elastic ring. J Elast 115:193-224

Showing the most recent 10 out of 66 publications