This represents a far ranging proposal to explore molecular mechanisms of regulation in yeast by one of the founders of yeast molecular biology. The four tangentially related objectives are: 1) post- translational control of the S. cerevisiae GCN4 gene; 2) regulation of intracellular levels of amino acids, particularly histidine, in S. cerevisiae; 3) probing for existencing of a multicopy silencing system in S. cerevisiae; and 4) testing for evidence of a meiotic cycle in C. albicans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM035010-16
Application #
2838512
Study Section
Genetics Study Section (GEN)
Program Officer
Anderson, James J
Project Start
1984-07-01
Project End
1999-11-30
Budget Start
1998-12-01
Budget End
1999-11-30
Support Year
16
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Whitehead Institute for Biomedical Research
Department
Type
DUNS #
076580745
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Vyas, Valmik K; Bushkin, G Guy; Bernstein, Douglas A et al. (2018) New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi. mSphere 3:
Vyas, Valmik K; Barrasa, M Inmaculada; Fink, Gerald R (2015) A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248
Lam, Felix H; Ghaderi, Adel; Fink, Gerald R et al. (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346:71-5
Schwartz, Schraga; Bernstein, Douglas A; Mumbach, Maxwell R et al. (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148-162
Edwards, Matthew D; Symbor-Nagrabska, Anna; Dollard, Lindsey et al. (2014) Interactions between chromosomal and nonchromosomal elements reveal missing heritability. Proc Natl Acad Sci U S A 111:7719-22
Wang, Benjamin L; Ghaderi, Adel; Zhou, Hang et al. (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32:473-8
Avalos, José L; Fink, Gerald R; Stephanopoulos, Gregory (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335-41
Schwartz, Schraga; Agarwala, Sudeep D; Mumbach, Maxwell R et al. (2013) High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155:1409-21
Agarwala, Sudeep D; Blitzblau, Hannah G; Hochwagen, Andreas et al. (2012) RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet 8:e1002732
Bumgarner, Stacie L; Neuert, Gregor; Voight, Benjamin F et al. (2012) Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell 45:470-82

Showing the most recent 10 out of 77 publications