We propose to further investigate the mechanism of the bc1 complex (UQH2:cyt c2 oxidoreductase) in order to understand its role in cellular aging, and its function as the target for drugs and pest-control reagents. These latter depend on differential sensitivities to quinone-mimics that act as anti-malarial drugs, fungicides, pesti- cides, herbicides, etc., in different species. These enzymes are at the core of all major respiratory and photosynthetic pathways, and are directly responsible for about 30% of the energy conversion of the biosphere. This central importance in biology provides an intrinsic interest, relating directly to our understanding of cellular physiology, energy conversion mechanisms, and maintenance. The photosynthetic bacteria provide a model system for studying the medically important mitochondrial complex. The catalytic core of the bc1 complex is highly conserved across the mitochondrial-bacterial divide, and the reaction mechanism is essentially the same. In the bacterial system, the interplay between function and structure can be more easily studied because the system can be activated by illumination, initiating turnover in the 10
Showing the most recent 10 out of 57 publications