In humans, there is a sizable burden of inherited mutations that contributes to ill health throughout the world. This includes vast numbers of people with common hemoglobinopathies caused by a single gene alteration (sickle cell anemia, alpha- and beta-thalassemia) and genetic variants that contribute to the burden of """"""""common"""""""" diseases present in all populations such as cardiovascular disease, cancer, and diabetes. The bulk of this morbidity and mortality arises from transmission of mutant genes from affected or carrier parents to their children. Some affected individuals also arise each generation as a result of inheriting a de novo germline mutation from unaffected parents. Although this is relatively rare, new germline mutations are the sole source of the heritable genetic variation that contributes not only to the """"""""genetic load"""""""" of our species but also to the raw materials for adaptive evolution. Our proposal is focused on studying new mutations that occur in the human male germline using a new set of molecular tools to analyze sperm DNA. We plan to study two dominantly inherited conditions, achondroplasia, and Apert syndrome. Our goal is to help explain why the chance of a father having an affected child with a new mutation increases with his age and whether fathers of sporadic cases have the same susceptibility to mutation as men in the general population. In addition, we will test the hypothesis that germline stem cells heterozygous for one of these mutations may have a selective advantage over wild type cells thereby explaining the unexpectedly high mutation frequency typical of both conditions. ? ? Relevance: The illness and death due to human genetic disease results from the transmission of mutant genes from affected or carrier parents to their children and the inheritance each generation of new mutations. Our proposal is focused on studying the frequency of new mutations that occur in human sperm using a new set of molecular tools. We plan to study achondroplasia and Apert syndrome with the goal of understanding why the chance of a father transmitting a new mutation to his child increases with his age. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM036745-22
Application #
7282040
Study Section
Genetic Variation and Evolution Study Section (GVE)
Program Officer
Anderson, Richard A
Project Start
1985-09-01
Project End
2010-08-31
Budget Start
2007-09-01
Budget End
2008-08-31
Support Year
22
Fiscal Year
2007
Total Cost
$408,325
Indirect Cost
Name
University of Southern California
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Arnheim, Norman; Calabrese, Peter (2016) Germline Stem Cell Competition, Mutation Hot Spots, Genetic Disorders, and Older Fathers. Annu Rev Genomics Hum Genet 17:219-43
Fischer, Jared M; Calabrese, Peter P; Miller, Ashleigh J et al. (2016) Single cell lineage tracing reveals a role for Tgf?R2 in intestinal stem cell dynamics and differentiation. Proc Natl Acad Sci U S A 113:12192-12197
Eboreime, Jordan; Choi, Soo-Kung; Yoon, Song-Ro et al. (2016) Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing. PLoS One 11:e0158340
Yoon, Song-Ro; Choi, Soo-Kung; Eboreime, Jordan et al. (2013) Age-dependent germline mosaicism of the most common noonan syndrome mutation shows the signature of germline selection. Am J Hum Genet 92:917-26
Shinde, Deepali N; Elmer, Dominik P; Calabrese, Peter et al. (2013) New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum Mol Genet 22:4117-26
Choi, Soo-Kyung; Yoon, Song-Ro; Calabrese, Peter et al. (2012) Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genet 8:e1002420
Qin, Jian; Subramanian, Jaichandar; Arnheim, Norman (2009) Detection of meiotic DNA breaks in mouse testicular germ cells. Methods Mol Biol 557:165-81
Yoon, Song-Ro; Qin, Jian; Glaser, Rivka L et al. (2009) The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. PLoS Genet 5:e1000558
Arnheim, Norman; Calabrese, Peter (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10:478-88
Tiemann-Boege, Irene; Curtis, Christina; Shinde, Deepali N et al. (2009) Product length, dye choice, and detection chemistry in the bead-emulsion amplification of millions of single DNA molecules in parallel. Anal Chem 81:5770-6

Showing the most recent 10 out of 46 publications