Proposed here is research to develop a combination of mass spectrometry instrumentation and techniques plus chemical and biochemical methods that will facilitate identification and near complete amino acid sequence analysis of intact proteins or large protein fragments on a chromatographic time scale. This research will make it possible to characterize multiple post-translational modifications, particularly those that exist o the same protein molecule and together regulate its biological activity. This research is driven by five major innovations in my lab: development of (a) electron transfer dissociation (ETD) for fragmentation of intact proteins, (b) ETD and IIPT (ion-ion proton transfer) chemistry to obtain N- and C-terminal sequence information from intact proteins, (c) front end ETD (FETD) that facilitates a 10-50 fold increase in sensitivity for intact proteins, (d) micro-column enzyme reactors that generate 3-10 kDa proteins fragments and provide 96% sequence coverage for monoclonal antibodies and (e) methodology for enrichment of O-GlcNAcylated peptides by boronic acid chemistry in non- aqueous solvents. Going forward, we will implement new IIPT reagents to extend the usable mass range to m/z 4,000, employ a combination of IIPT and parallel ion parking strategies to concentrate multiple charge states observed in protein ESI into a single lower charge state for protein identification by CAD, develop parallel ion parking strategies to minimize second generation ETD reactions and thus allow us to read complete protein sequences from both the n- and c- termini of intact proteins, build a longer linear ion tra to increase the number of protein ions that can be stored for analysis, extend the micro-column enzyme reactor concept to other proteases and solvents and then apply all of this development to the analysis of proteins in outer membrane vesicles secreted by the antibiotic resistant, gram negative bacteria, Neisseria gonorrhoeae. The ultimate goal is to be able to identify bacterial, virulence-factor proteins on a chromatographic time scale. The above technology will also be employed to characterize (a) proteolytic cleavage events on histones that alter the epigenetic code, (b) O- GlcNAc sites on ribosomal proteins, mitochondrial proteins in the heart, and all known human kinases, and (c) protein binding partners for RSK1 (ribosomal protein S6 Kinase) that plays a major role in breast cancer.

Public Health Relevance

Proposed here is research to develop new mass spectrometry instrumentation and methods for the near complete amino acid sequence analysis of intact proteins or large protein fragments on a chromatographic time scale. This new technology will facilitate characterization of antibody drugs, bacterial proteins involved in antibiotic resistance, proteolytic events involved in epigenetic signaling, and protein posttranslational modifications involved in regulating the cellular response to stress and nutrient availability. Dysregulation of cell signaling is a hallmark of many diseases, including cancer, diabetes, and numerous mental disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM037537-32
Application #
9544970
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Krepkiy, Dmitriy
Project Start
1987-01-12
Project End
2019-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
32
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Virginia
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Martínez-Turiño, Sandra; Pérez, José De Jesús; Hervás, Marta et al. (2018) Phosphorylation coexists with O-GlcNAcylation in a plant virus protein and influences viral infection. Mol Plant Pathol 19:1427-1443
Simon, Dan N; Wriston, Amanda; Fan, Qiong et al. (2018) OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A. Cells 7:
Malaker, Stacy A; Penny, Sarah A; Steadman, Lora G et al. (2017) Identification of Glycopeptides as Posttranslationally Modified Neoantigens in Leukemia. Cancer Immunol Res 5:376-384
Weisbrod, Chad R; Kaiser, Nathan K; Syka, John E P et al. (2017) Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis. J Am Soc Mass Spectrom 28:1787-1795
Zentella, Rodolfo; Sui, Ning; Barnhill, Benjamin et al. (2017) The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat Chem Biol 13:479-485
Stankovic, Ana; Guo, Lucie Y; Mata, João F et al. (2017) A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly. Mol Cell 65:231-246
Zhang, Lichao; English, A Michelle; Bai, Dina L et al. (2016) Analysis of Monoclonal Antibody Sequence and Post-translational Modifications by Time-controlled Proteolysis and Tandem Mass Spectrometry. Mol Cell Proteomics 15:1479-88
Bailey, Aaron O; Panchenko, Tanya; Shabanowitz, Jeffrey et al. (2016) Identification of the Post-translational Modifications Present in Centromeric Chromatin. Mol Cell Proteomics 15:918-31
Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping et al. (2016) O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev 30:164-76
Anderson, Lissa C; Karch, Kelly R; Ugrin, Scott A et al. (2016) Analyses of Histone Proteoforms Using Front-end Electron Transfer Dissociation-enabled Orbitrap Instruments. Mol Cell Proteomics 15:975-88

Showing the most recent 10 out of 189 publications