Chemotaxis, or directed cell movement toward a small molecule ligand, plays a key role in many cellular and physiological responses, including metastasis of cancer cells, movement of neutrophils and macrophage in immunity, migration of embryonic cells during development, and aggregation of Dictyostelium during development. In each of these varied cell types and processes, the responding cells are able to amplify a shallow extracellular chemoattractant gradient into a very steep intracellular gradient and thus translate the directional signal into directional cell movement. Fulfillment of this requirement occurs through an integrated circuit of signaling pathways that are pathways are highly conserved between Dictyostelium and man. Recent findings establish that the phosphatidylinositol 3-kinase (PI3K) mediated pathway is pivotal to this circuit. This proposal focuses on the further analysis of the PI3K dependent signal pathway using Dictyostelium cells, which are amenable to biochemical, genetic, and cell biological approaches. Our goal is to identify and examine potential upstream regulators, including those required for localizing PI3K to the leading edge of chemotaxing ceils. We will examine the function of two already identified PI3K effectors, PhdA and PhdB, and identify the proteins with which they interact to better understand how these PI3K effectors contribute to the regulation of chemotaxis. The application also focuses on the role of Ras in controlling the spatial-temporal regulation of PI3K activity. Additional Ras effectors that control the ability of cells to establish polarized intracellular gradients, which are essential for directional cell movement, will also be examined. Finally, we propose to discover and examine the function of additional PI3K regulators through application of mutant screens, two-hybrid screens, and biochemical approaches. The work proposed in this application should provide new and important insights into mechanisms that control this highly evolutionarily conserved cell biological process, and thus provide the needed background to elucidate the cellular basis underlying a variety of human diseases, including those affecting innate immunity and metastasis of cancer cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM037830-21
Application #
7161472
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Anderson, Richard A
Project Start
1986-07-01
Project End
2007-12-31
Budget Start
2007-01-01
Budget End
2007-12-31
Support Year
21
Fiscal Year
2007
Total Cost
$565,302
Indirect Cost
Name
University of California San Diego
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Liu, Youtao; Lacal, Jesus; Firtel, Richard A et al. (2018) Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization. Small GTPases 9:360-364
Scavello, Margarethakay; Petlick, Alexandra R; Ramesh, Ramya et al. (2017) Protein kinase A regulates the Ras, Rap1 and TORC2 pathways in response to the chemoattractant cAMP in Dictyostelium. J Cell Sci 130:1545-1558
Liu, Youtao; Lacal, Jesus; Veltman, Douwe M et al. (2016) A G?-Stimulated RapGEF Is a Receptor-Proximal Regulator of Dictyostelium Chemotaxis. Dev Cell 37:458-72
Khanna, Ankita; Lotfi, Pouya; Chavan, Anita J et al. (2016) The small GTPases Ras and Rap1 bind to and control TORC2 activity. Sci Rep 6:25823
Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C et al. (2016) Cooperative cell motility during tandem locomotion of amoeboid cells. Mol Biol Cell 27:1262-71
Álvarez-González, Begoña; Meili, Ruedi; Bastounis, Effie et al. (2015) Three-dimensional balance of cortical tension and axial contractility enables fast amoeboid migration. Biophys J 108:821-832
Bastounis, Effie; Meili, Ruedi; Álvarez-González, Begoña et al. (2014) Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. J Cell Biol 204:1045-61
Alvarez-González, Begoña; Meili, Ruedi; Firtel, Richard et al. (2014) Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion. Appl Mech Rev 66:
Kölsch, Verena; Shen, Zhouxin; Lee, Susan et al. (2013) Daydreamer, a Ras effector and GSK-3 substrate, is important for directional sensing and cell motility. Mol Biol Cell 24:100-14
del Álamo, Juan C; Meili, Ruedi; Álvarez-González, Begoña et al. (2013) Three-dimensional quantification of cellular traction forces and mechanosensing of thin substrata by fourier traction force microscopy. PLoS One 8:e69850

Showing the most recent 10 out of 40 publications