Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM038032-10
Application #
2179098
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Project Start
1987-04-01
Project End
1997-03-31
Budget Start
1996-07-01
Budget End
1997-03-31
Support Year
10
Fiscal Year
1996
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Surgery
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Crowell, Kristen T; Moreno, Samantha; Steiner, Jennifer L et al. (2018) Temporally Distinct Regulation of Pathways Contributing to Cardiac Proteostasis During the Acute and Recovery Phases of Sepsis. Shock 50:616-626
Crowell, Kristen T; Soybel, David I; Lang, Charles H (2017) Inability to replete white adipose tissue during recovery phase of sepsis is associated with increased autophagy, apoptosis, and proteasome activity. Am J Physiol Regul Integr Comp Physiol 312:R388-R399
Crowell, Kristen T; Phillips, Brett E; Kelleher, Shannon L et al. (2017) Immune and metabolic responses in early and late sepsis during mild dietary zinc restriction. J Surg Res 210:47-58
Crowell, Kristen T; Soybel, David I; Lang, Charles H (2017) Restorative Mechanisms Regulating Protein Balance in Skeletal Muscle During Recovery From Sepsis. Shock 47:463-473
Crowell, Kristen T; Kelleher, Shannon L; Soybel, David I et al. (2016) Marginal dietary zinc deprivation augments sepsis-induced alterations in skeletal muscle TNF-? but not protein synthesis. Physiol Rep 4:
Atherton, Philip J; Greenhaff, Paul L; Phillips, Stuart M et al. (2016) Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am J Physiol Endocrinol Metab 311:E594-604
Gordon, Bradley S; Steiner, Jennifer L; Williamson, David L et al. (2016) Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab 311:E157-74
Steiner, Jennifer L; Crowell, Kristen T; Kimball, Scot R et al. (2015) Disruption of REDD1 gene ameliorates sepsis-induced decrease in mTORC1 signaling but has divergent effects on proteolytic signaling in skeletal muscle. Am J Physiol Endocrinol Metab 309:E981-94
Gordon, Bradley S; Williamson, David L; Lang, Charles H et al. (2015) Nutrient-induced stimulation of protein synthesis in mouse skeletal muscle is limited by the mTORC1 repressor REDD1. J Nutr 145:708-13
Steiner, Jennifer L; Lang, Charles H (2015) Sepsis attenuates the anabolic response to skeletal muscle contraction. Shock 43:344-51

Showing the most recent 10 out of 41 publications