Myosin II is responsible for the powering of skeletal and cardiac muscle as well as cell locomotion and cytokinesis. Defects in myosin function have been shown to cause hypertrophic cardiomyopathy in humans. The long term goal of the proposed studies is to understand how this critical molecular motor converts the energy of ATP hydrolysis into force and how that force generating machinery is organized within cells and tissues to produce directed cell locomotion and cytokinesis. There are three specific aims proposed in this application. (1) To use biochemical and structural analysis together with measurements of the kinetic and mechanical properties of mutant myosin molecules and to produce novel mutations to test specific hypotheses regarding the role of light chains in conversion of chemical energy into force generation. (2) To distinguish between alternative models for myosin force generation during cell locomotion by following the dynamics on myosin reorganization during locomotion and changes in cell direction. (3) To define the mechanisms responsible for regulating myosin during cell migration and cytokinesis. Specifically we will undertake a direct test of the role of myosin phosphorylation in cultured mammalian cells using gene replacement and transgene expression. We will also employ a novel biosensor to monitor the state of MLCK activity and localization as a means of exploring the mechanism by which MLCK regulates myosin activity within the context of migrating cells. The primary experimental approaches used in these studies include the molecular genetic manipulation of myosin light chains and the characterization of the consequences of these manipulations on the biochemistry, cellular localization and phenotypes of the cells, tissues and organisms bearing these mutations. These studies will increase our 0understanding of the fundamental mechanisms by which cells move and how the molecular motor myosin contributes to cell movement. Cell movement is critical for normal embryonic development, for normal physiological processes such as wound healing, the immune response to infection and angiogenesis. Analysis of these mutant light chains may also provide insights into how light chain mutations in ventricular light chain isoforms might contribute to cardiac hypertrophy.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM039264-13
Application #
6179552
Study Section
Special Emphasis Panel (ZRG1-CBY-2 (01))
Program Officer
Deatherage, James F
Project Start
1988-02-01
Project End
2003-06-30
Budget Start
2000-07-01
Budget End
2001-06-30
Support Year
13
Fiscal Year
2000
Total Cost
$334,648
Indirect Cost
Name
Northwestern University at Chicago
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Kengyel, Andras; Wolf, Wendy A; Chisholm, Rex L et al. (2010) Nonmuscle myosin IIA with a GFP fused to the N-terminus of the regulatory light chain is regulated normally. J Muscle Res Cell Motil 31:163-70
Chew, Teng-Leong; Wolf, Wendy A; Gallagher, Patricia J et al. (2002) A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J Cell Biol 156:543-53
Fey, Petra; Stephens, Stephen; Titus, Margaret A et al. (2002) SadA, a novel adhesion receptor in Dictyostelium. J Cell Biol 159:1109-19
Zhang, Hui; Wessels, Deborah; Fey, Petra et al. (2002) Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity during Dictyostelium chemotaxis. J Cell Sci 115:1733-47
Ma, Shuo; Chisholm, Rex L (2002) Cytoplasmic dynein-associated structures move bidirectionally in vivo. J Cell Sci 115:1453-60
Xu, X S; Lee, E; Chen , T et al. (2001) During multicellular migration, myosin ii serves a structural role independent of its motor function. Dev Biol 232:255-64
Wolf, W A; Chew, T L; Chisholm, R L (1999) Regulation of cytokinesis. Cell Mol Life Sci 55:108-20
Chaudoir, B M; Kowalczyk, P A; Chisholm, R L (1999) Regulatory light chain mutations affect myosin motor function and kinetics. J Cell Sci 112 ( Pt 10):1611-20
Ma, S; Trivinos-Lagos, L; Graf, R et al. (1999) Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J Cell Biol 147:1261-74
Ho, G; Chisholm, R L (1997) Substitution mutations in the myosin essential light chain lead to reduced actin-activated ATPase activity despite stoichiometric binding to the heavy chain. J Biol Chem 272:4522-7

Showing the most recent 10 out of 18 publications