: The goal of this proposal is to understand the connection between the yeast to filament switch and fungal virulence. This switch is intimately connected to the molecules that encircle the fungal cell, beta-glucan and the linked mannoproteins (adhesins). The analysis of filamentation in the model system, Saccharomyces cerevisiae will guide the studies in the less tractable pathogen, Candida albicans. The genomes of both fungi encode many mannoproteins that confer unique adherence properties. These adhesins are required for interactions of fungal cells with each other {flocculation and filamentation), with inert surfaces (agar and plastic) and with mammalian cells. The role of a novel antisense IME4 RNA in controlling the expression of the adhesins will be determined in both organisms. The role of tyrosol, an autoregulatory molecule in triggering the switch between the yeast form and the filament form as well as its role in the interaction of fungi with phagocytic cells will be resolved by analysis of its biosynthesis, perception and role in signal transduction. The ability of macrophages to distinguish between Saccharomyces and Candida is likely to result from differential accessibility of beta-glucan on the surface of each organism to Dectin-1, the key non-opsonic fungal receptor on macrophages. Preliminary experiments show that differential beta-glucan presentation on the fungal cell surface leads to differential binding of fungi to Dectin-1 and to different elicitation of inflammatory cytokines from macrophages. The question of whether the unmasking of beta-glucan or the structure of beta-glucan is key will be resolved by systematic use of whole genome mutant libraries to identify mutants with altered beta-glucan presentation and the use of those mutants to identify the immune response. Additional experiments are designed to identify all the genes required for the mannoproteins to transit to the fungal cell wall. Our finding that hypoxia induces filamentation in Candida will be used to analyze the genes important for virulence under low oxygen tensions. The genes uncovered in our analyses are potential targets for the development of novel therapeutics against fungi, which are so devastating to those undergoing chemotherapy and afflicted with AIDS.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM040266-22
Application #
6919442
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Shapiro, Bert I
Project Start
1984-07-01
Project End
2009-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
22
Fiscal Year
2005
Total Cost
$703,326
Indirect Cost
Name
Whitehead Institute for Biomedical Research
Department
Type
DUNS #
120989983
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Avalos, José L; Fink, Gerald R; Stephanopoulos, Gregory (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335-41
Strijbis, Karin; Tafesse, Fikadu G; Fairn, Gregory D et al. (2013) Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog 9:e1003446
Bernstein, Douglas A; Vyas, Valmik K; Fink, Gerald R (2012) Genes come and go: the evolutionarily plastic path of budding yeast RNase III enzymes. RNA Biol 9:1123-8
Ryan, Owen; Shapiro, Rebecca S; Kurat, Christoph F et al. (2012) Global gene deletion analysis exploring yeast filamentous growth. Science 337:1353-6
Jansen, An; van der Zande, Elisa; Meert, Wim et al. (2012) Distal chromatin structure influences local nucleosome positions and gene expression. Nucleic Acids Res 40:3870-85
Bernstein, Douglas A; Vyas, Valmik K; Weinberg, David E et al. (2012) Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci U S A 109:523-8
Agarwala, Sudeep D; Blitzblau, Hannah G; Hochwagen, Andreas et al. (2012) RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet 8:e1002732
Bumgarner, Stacie L; Neuert, Gregor; Voight, Benjamin F et al. (2012) Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell 45:470-82
Botstein, David; Fink, Gerald R (2011) Yeast: an experimental organism for 21st Century biology. Genetics 189:695-704
Esteban, Alexandre; Popp, Maximilian W; Vyas, Valmik K et al. (2011) Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci U S A 108:14270-5

Showing the most recent 10 out of 69 publications