The goal of this research is to understand how vinculin exerts a tumor-suppressor-like effect on cell motility. Vinculin is a prominent component of cell and tissue structures that mediate transmembrane connections between the intracellular cytoskeleton and the extracellular matrix. Current models suggest that vinculin stimulates adhesion and inhibits motility by strengthening these connections through bifunctional interactions between talin-integrin complexes at vinculin's head domain and actin filaments at its tail domain. Because purified vinculin is autoinhibited, regulation of the head/tail interaction (HTI) to expose or hide ligand binding sites is hypothesized to be the mechanism by which vinculin regulates attachment of membrane proteins to cytoskeleton to control adhesion and motility. A goal of this proposal is to test this model in living cells. We developed two Forster resonance energy transfer (FRET) probes that report on activated and actin-binding conformations of vinculin, a series of mutants having a graded reduction in the strength of the intramolecular HTI, and a talin- binding mutant. We propose to apply these tools to address the following specific aims: 1). Use vinculin FRET probes to test the hypothesis that there are redundant mechanisms for combinatorial activation of vinculin. Talin and actin filaments together can activate vinculin;we will test the roles of other vinculin ligands, as well as PIP2 to define the signaling and localization cues for vinculin activation. 2). Use the head/tail interaction mutants and the talin-binding mutant to test the hypothesis that activation of vinculin regulates interactions between integrin, talin, vinculin, and actin that control cell adhesion, motility, and transduction of force across the cell membrane. 3). Use the conformation-sensitive vinculin FRET probes to test the hypothesis that activation of vinculin responds to mechanical forces and contractility in living cells. Collaborations have been set up with Sharon Campbell to facilitate analyses of PIP2 in combinatorial activation of vinculin (part of Aim1), with Andres Garcia to measure adhesive force in cells, and with Susan Gunst to measure tension development in smooth muscle tissue (parts of Aim2). We anticipate that these studies will provide substantial new information relevant to the general question of how proteins build structures to transmit force across a membrane, and specifically to the molecular mechanism by which vinculin suppresses cell migration. PUBLIC HEALTH REVELANCE: Abnormal cell adhesion and migration are characteristic of cancers that kill people. This project aims to find out how cell migration and adhesion are regulated by a protein called vinculin. By learning how vinculin works, we can better understand how to control the abnormal cell behaviors of cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM041605-30
Application #
7664920
Study Section
Cell Structure and Function (CSF)
Program Officer
Gindhart, Joseph G
Project Start
1977-08-01
Project End
2012-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
30
Fiscal Year
2009
Total Cost
$418,198
Indirect Cost
Name
Johns Hopkins University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Nanda, Suman Yadav; Hoang, Thuy; Patel, Priya et al. (2014) Vinculin regulates assembly of talin: ?3 integrin complexes. J Cell Biochem 115:1206-16
Dumbauld, David W; Lee, Ted T; Singh, Ankur et al. (2013) How vinculin regulates force transmission. Proc Natl Acad Sci U S A 110:9788-93
Coyer, Sean R; Singh, Ankur; Dumbauld, David W et al. (2012) Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J Cell Sci 125:5110-23
Peng, Xiao; Maiers, Jessica L; Choudhury, Dilshad et al. (2012) ?-Catenin uses a novel mechanism to activate vinculin. J Biol Chem 287:7728-37
Chen, Hui; Choudhury, Dilshad M; Craig, Susan W (2006) Coincidence of actin filaments and talin is required to activate vinculin. J Biol Chem 281:40389-98
Cohen, Daniel M; Kutscher, Brett; Chen, Hui et al. (2006) A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions. J Biol Chem 281:16006-15
Chen, Hui; Cohen, Daniel M; Choudhury, Dilshad M et al. (2005) Spatial distribution and functional significance of activated vinculin in living cells. J Cell Biol 169:459-70
Cohen, Daniel M; Chen, Hui; Johnson, Robert P et al. (2005) Two distinct head-tail interfaces cooperate to suppress activation of vinculin by talin. J Biol Chem 280:17109-17
Johnson, R P; Craig, S W (2000) Actin activates a cryptic dimerization potential of the vinculin tail domain. J Biol Chem 275:95-105
Steimle, P A; Hoffert, J D; Adey, N B et al. (1999) Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J Biol Chem 274:18414-20

Showing the most recent 10 out of 12 publications