Voltage-gated ion channels confer electrical excitability on neurons and muscle cells and thereby play essential roles in the physiology of brain, heart, and skeletal muscle. Disruption of channel function or expression results in neurological, muscular, and cardiovascular diseases. The goal of this project is to determine the molecular mechanism by which voltage controls channel activity. In the proposed research, we will use the Shaker K+ channel to investigate fundamental aspects of voltage-dependent activation that are poorly understood or previously unrecognized.
The Specific Aims of this proposal are: 1) To probe the structural environment of voltage-sensing residues in S4 during activation. We will test the hypotheses that S4 arginine residues interact with conserved acidic residues in S2 and S3 in closed conformations and follow a common pathway as they traverse the transmembrane electric field during activation. 2) To investigate S3b motion during voltage-dependent activation. A major controversy exists between different models for the mechanism of activation. Does S4 move independently or in conjunction with S3b? We will test the range of S3b motion relative to its environment by determining its proximity to S2, a stationary component of the voltage sensor domain, during activation. 3) To test the hypotheses that F290 serves as the physical barrier between internal and external gating crevices and is energetically coupled to charge-moving S4 arginine residues during activation. In the original version of this application, we proposed to test the hypothesis that F290 facilitates passage of charge-moving S4 residues across the electric field. New results from the laboratory of Rod MacKinnon strongly support this proposal. In the revised Aim we will investigate 3 key questions about the role of F290 during activation. First, what are the contributions of F290, I241 in S1, and I287 in S2 to the lid that excludes water from the barrier where the electric field is focused? Second, does R1 cross F290 to reside below the barrier in the resting state? This idea, which is consistent with MacKinnon's results, is contrary to previous experimental and computational analyses of R1's position at rest. Third, is F290 energetically coupled to each charge-moving residue in S4? This question has important implications for the mechanism of charge transfer across the field and the number and structure of intermediate closed conformations in the activation pathway. To accomplish these Specific Aims, we will determine the effects of experimental perturbations on ionic and gating currents and the fluorescent intensity of reporter fluorophores that detect different phases of the activation mechanism. In collaboration with Dr. Benoit Roux, experimental constraints identified in the research will be used to generate low resolution structural models of the resting and, if possible, intermediate closed conformations. MD simulations will be used to assess changes in local protein dynamics that might underlie experimental results. In this work, we will build on our notable success in identifying specific, short range structural interactions, including state-dependent interactions, in voltage-gated K+ channels.

Public Health Relevance

Voltage-gated ion channels confer electrical excitability on neurons and muscle cells and thereby play essential roles in the physiology of brain, heart, and skeletal muscle;disruption of channel function or expression results in neurological, muscular, and cardiovascular diseases. The goal of this research is to determine the mechanism by which voltage controls channel activity. We will study the function of the barrier that voltage-sensing residues cross during activation. An increase in the permeability of this barrier is a newly- discovered cause of human genetic diseases;the proposed research may lead to new therapeutic approaches to seal the barrier in these diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Nie, Zhongzhen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Lin, Meng-Chin A; Cannon, Stephen C; Papazian, Diane M (2018) Kv4.2 autism and epilepsy mutation enhances inactivation of closed channels but impairs access to inactivated state after opening. Proc Natl Acad Sci U S A 115:E3559-E3568
Duarri, Anna; Lin, Meng-Chin A; Fokkens, Michiel R et al. (2015) Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cell Mol Life Sci 72:3387-99
Lee, Hane; Lin, Meng-chin A; Kornblum, Harley I et al. (2014) Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet 23:3481-9
Lin, Meng-chin A; Hsieh, Jui-Yi; Mock, Allan F et al. (2011) R1 in the Shaker S4 occupies the gating charge transfer center in the resting state. J Gen Physiol 138:155-63
Lin, Meng-chin A; Abramson, Jeff; Papazian, Diane M (2010) Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening. J Gen Physiol 135:415-31
Koag, Myong-Chul; Papazian, Diane M (2009) Voltage-dependent conformational changes of KVAP S4 segment in bacterial membrane environment. Channels (Austin) 3:356-65
Lin, Meng Chin A; Papazian, Diane M (2007) Differences between ion binding to eag and HERG voltage sensors contribute to differential regulation of activation and deactivation gating. Channels (Austin) 1:429-37
Waters, Michael F; Minassian, Natali A; Stevanin, Giovanni et al. (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 38:447-51
Bannister, John P A; Chanda, Baron; Bezanilla, Francisco et al. (2005) Optical detection of rate-determining ion-modulated conformational changes of the ether-a-go-go K+ channel voltage sensor. Proc Natl Acad Sci U S A 102:18718-23
Silverman, W R; Tang, C Y; Mock, A F et al. (2000) Mg(2+) modulates voltage-dependent activation in ether-a-go-go potassium channels by binding between transmembrane segments S2 and S3. J Gen Physiol 116:663-78

Showing the most recent 10 out of 18 publications