The human body contains a million or so distinct proteins. Chemistry harbors the potential to provide ready access to these natural proteins as well as to create nonnatural ones with desirable attributes. During the previous grant period, new chemical means were discovered to manipulate protein structure and protein function.
Specific Aims. The overall goal of the proposed research is to use ideas and methods from organic chemistry and chemical biology to extend our fundamental understanding of the chemical reactivity of proteins, and to employ that understanding in meaningful ways. During the next grant period, this intent will be achieved in four Specific Aims.
Aims 1 -3 employ chemistry to effect the bioreversible modification of protein amino groups, carboxyl groups, and sulfhydryl groups.
Aim 4 integrates three state-of-the-art methods in protein chemistry (nonnatural amino acid mutagenesis, expressed protein ligation, and the traceless Staudinger ligation) to produce authentic ubiquitin conjugates and to use those conjugates to reveal key molecular aspects of protein degradation by the proteasome. Notably, the modifications in Aims 1 and 2 will provide distinct means to deliver proteins into human cells, and those in Aims 1-3 will be performed on an important tumor suppressor protein, PTEN. Significance. The results of the research proposed herein will provide new insight into the intrinsic and extrinsic chemical reactivity of proteins, as well as extend the capacity to access and manipulate proteins. The knowledge gained will have a broad and deep impact on biomedicine in this post-genomic era.

Public Health Relevance

A protein is a gene-encoded string of amino acids that folds into a three-dimensional structure. Proteins perform the molecular functions that are necessary for life, including catalysis of biochemical reactions (by enzymes), neutralization of foreign toxis (by antibodies), and stimulation of cellular activity (by hormones). The goal of this project is to develop chemical means to manipulate proteins with a precision that is unobtainable with other (e.g., genetic) methods and to endow proteins thereby with desirable attributes that could be transformative to biomedicine.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Earth Sciences/Resources
United States
Zip Code
Windsor, Ian W; Palte, Michael J; Lukesh 3rd, John C et al. (2018) Sub-picomolar Inhibition of HIV-1 Protease with a Boronic Acid. J Am Chem Soc 140:14015-14018
Chyan, Wen; Kilgore, Henry R; Raines, Ronald T (2018) Cytosolic Uptake of Large Monofunctionalized Dextrans. Bioconjug Chem 29:1942-1949
Chyan, Wen; Raines, Ronald T (2018) Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging. ACS Chem Biol 13:1810-1823
Chyan, Wen; Kilgore, Henry R; Gold, Brian et al. (2017) Electronic and Steric Optimization of Fluorogenic Probes for Biomolecular Imaging. J Org Chem 82:4297-4304
Mix, Kalie A; Lomax, Jo E; Raines, Ronald T (2017) Cytosolic Delivery of Proteins by Bioreversible Esterification. J Am Chem Soc 139:14396-14398
Smith, Thomas P; Windsor, Ian W; Forest, Katrina T et al. (2017) Stilbene Boronic Acids Form a Covalent Bond with Human Transthyretin and Inhibit Its Aggregation. J Med Chem 60:7820-7834
Hoang, Trish T; Smith, Thomas P; Raines, Ronald T (2017) A Boronic Acid Conjugate of Angiogenin that Shows ROS-Responsive Neuroprotective Activity. Angew Chem Int Ed Engl 56:2619-2622
Burke, Eileen G; Gold, Brian; Hoang, Trish T et al. (2017) Fine-Tuning Strain and Electronic Activation of Strain-Promoted 1,3-Dipolar Cycloadditions with Endocyclic Sulfamates in SNO-OCTs. J Am Chem Soc 139:8029-8037
Aronoff, Matthew R; Gold, Brian; Raines, Ronald T (2016) 1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides. Org Lett 18:1538-41
Arnold, Ulrich; Raines, Ronald T (2016) Replacing a single atom accelerates the folding of a protein and increases its thermostability. Org Biomol Chem 14:6780-5

Showing the most recent 10 out of 134 publications