The conventional framework for understanding reactivity and selectivity in organic reactions fails for reactions influenced by dynamic effects. Our work has identified three types of dynamic effects that we expect to be common in ordinary organic reactions in solution. We propose their detailed mechanistic investigation in diverse reactions.
The aim of this research is to identify experimental examples and develop experimentally-based evidence for each type of dynamic effect. This includes the characterization of observations associated with dynamic effects and the development of new experimental tests for dynamic effects. We also aim to establish examples of these types of dynamic effects in enzymatic and organometallic reactions. Overall, our goal is to provide a sufficient experimental phenomenology to foster understanding, allowing other workers to recognize when dynamic effects play a role in their reactions. Finally, mechanistic studies are proposed with the aim of understanding and controlling selectivity in some important new reactions. The health-relatedness of this work derives from its impact on the understanding of reactions important in the synthesis of medicinally important substances and reactions important in biosynthetic pathways. The synthesis of pharmaceuticals and the manipulation of biological pathways depend on the rational design and control of chemical reactions, which in turn depend on the understanding of chemical reactions. Our research is providing fundamental news ways to understand reactions that should aid in their invention, development, and regulation.
Showing the most recent 10 out of 25 publications