(verbatim from the application): Dosage compensation is a striking example of the interplay between gene-specific regulation and chromosomal architecture. This process has evolved to make X-linked gene expression equivalent in males with one X chromosome and females with two. In species examined at the molecular level, dosage compensation is mediated by sex-specific factors that decorate the X chromosomes to regulate chromatin structure and gene expression. In Drosophila, dosage compensation is achieved, at least in part, through site-specific histone H4 acetylation, modulated by a male-specific, X-specific protein complex (composed of the MSL proteins, and possibly non-coding roX RNAs). Our focus in the coming grant period will be to understand the exquisite X chromosome-specificity of the Drosophila dosage compensation complex. Our experiments will test a new model for the recognition of X linked genes by the MSL complex. We recently obtained evidence that in wild type males, the MSL complex forms at ~30 chromatin entry sites, distributed exclusively along the X, and is then attracted in cis to sequences or proteins that may be common to active genes throughout the genome. This represents a significant change from the longstanding expectation that most X-linked genes would have X-specific, enhancer-like target sequences recognized by the MSL complex in trans. Our model raises interesting parallels with mammalian dosage compensation. In both flies and humans, regulatory molecules are normally restricted in cis to the X chromosome, but if brought to autosomes, can spread on genes never before dosage compensated. Dissecting the mechanisms underlying these epigenetic regulatory processes will provide insight into many important biological problems, including normal and disease states in humans. The superb spatial resolution of polytene chromosomes, a defined initiation site for spreading, and the availability of mutants in the protein and RNA spreading components make the MSL complex an ideal model system to determine how changes in chromatin architecture affect gene expression in complex organisms.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM045744-10
Application #
6131918
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Greenberg, Judith H
Project Start
1991-04-01
Project End
2004-03-31
Budget Start
2000-04-01
Budget End
2001-03-31
Support Year
10
Fiscal Year
2000
Total Cost
$139,079
Indirect Cost
Name
Baylor College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
074615394
City
Houston
State
TX
Country
United States
Zip Code
77030
McElroy, Kyle A; Jung, Youngsook L; Zee, Barry M et al. (2017) upSET, the Drosophila homologue of SET3, Is Required for Viability and the Proper Balance of Active and Repressive Chromatin Marks. G3 (Bethesda) 7:625-635
Zee, Barry M; Alekseyenko, Artyom A; McElroy, Kyle A et al. (2016) Streamlined discovery of cross-linked chromatin complexes and associated histone modifications by mass spectrometry. Proc Natl Acad Sci U S A 113:1784-9
Kuroda, Mitzi I; Hilfiker, Andres; Lucchesi, John C (2016) Dosage Compensation in Drosophila-a Model for the Coordinate Regulation of Transcription. Genetics 204:435-450
Alekseyenko, Artyom A; McElroy, Kyle A; Kang, Hyuckjoon et al. (2015) BioTAP-XL: Cross-linking/Tandem Affinity Purification to Study DNA Targets, RNA, and Protein Components of Chromatin-Associated Complexes. Curr Protoc Mol Biol 109:21.30.1-32
Lucchesi, John C; Kuroda, Mitzi I (2015) Dosage compensation in Drosophila. Cold Spring Harb Perspect Biol 7:
Alekseyenko, Artyom A; Gorchakov, Andrey A; Zee, Barry M et al. (2014) Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev 28:1445-60
McElroy, Kyle A; Kang, Hyuckjoon; Kuroda, Mitzi I (2014) Are we there yet? Initial targeting of the Male-Specific Lethal and Polycomb group chromatin complexes in Drosophila. Open Biol 4:140006
Ferrari, Francesco; Alekseyenko, Artyom A; Park, Peter J et al. (2014) Transcriptional control of a whole chromosome: emerging models for dosage compensation. Nat Struct Mol Biol 21:118-25
Zhou, Qi; Ellison, Christopher E; Kaiser, Vera B et al. (2013) The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLoS Biol 11:e1001711
Alekseyenko, Artyom A; Ellison, Christopher E; Gorchakov, Andrey A et al. (2013) Conservation and de novo acquisition of dosage compensation on newly evolved sex chromosomes in Drosophila. Genes Dev 27:853-8

Showing the most recent 10 out of 45 publications