The design of new, efficient and general methods for the preparation of enantiomerically pure pharmaceuticals is an area of great current interest. In today's climate, few, if any racemic compounds are viable candidates to become of pharmaceutical importance. The preparation of enantiomerically pure drugs is often much more costly than that of their racemic analogues. The goals of this project are to develop novel, useful and practical methods for the synthesis of optically pure compounds from readily available materials. Among others, the following will be studied: l) The asymmetric hydrogenation and hydrosilylation of imines, both cyclic and acyclic, as a route to optically pure amines. Enantiomerically pure amines are ubiquitous in both naturally occurring and man-made compounds which manifest high levels of biological activity. Moreover, hydrogenation is an environmentally friendly process; no waste is produced. 2) The asymmetric hydrogenation of olefinic substrates, particularly those which are not good substrates for more traditional methods of asymmetric hydrogenation. A wide variety of products may be produced by this technique, many of which are not conveniently or are totally inaccessible using other methodology. Included will be the preparation of optically pure main group metallacycles which are important, in their own right, in other catalytic asymmetric transformations.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM046059-08
Application #
6018840
Study Section
Medicinal Chemistry Study Section (MCHA)
Project Start
1992-08-01
Project End
2000-07-31
Budget Start
1999-08-01
Budget End
2000-07-31
Support Year
8
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Tsai, Erica Y; Liu, Richard Y; Yang, Yang et al. (2018) A Regio- and Enantioselective CuH-Catalyzed Ketone Allylation with Terminal Allenes. J Am Chem Soc 140:2007-2011
Kubota, Koji; Dai, Peng; Pentelute, Bradley L et al. (2018) Palladium Oxidative Addition Complexes for Peptide and Protein Cross-linking. J Am Chem Soc 140:3128-3133
Zhou, Yujing; Bandar, Jeffrey S; Liu, Richard Y et al. (2018) CuH-Catalyzed Asymmetric Reduction of ?,?-Unsaturated Carboxylic Acids to ?-Chiral Aldehydes. J Am Chem Soc 140:606-609
Gribble Jr, Michael W; Guo, Sheng; Buchwald, Stephen L (2018) Asymmetric Cu-Catalyzed 1,4-Dearomatization of Pyridines and Pyridazines without Preactivation of the Heterocycle or Nucleophile. J Am Chem Soc 140:5057-5060
Ingoglia, Bryan T; Buchwald, Stephen L (2017) Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands. Org Lett 19:2853-2856
Gribble Jr, Michael W; Pirnot, Michael T; Bandar, Jeffrey S et al. (2017) Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles. J Am Chem Soc 139:2192-2195
Zhou, Yujing; Bandar, Jeffrey S; Buchwald, Stephen L (2017) Enantioselective CuH-Catalyzed Hydroacylation Employing Unsaturated Carboxylic Acids as Aldehyde Surrogates. J Am Chem Soc 139:8126-8129
Zhao, Wenjun; Lee, Hong Geun; Buchwald, Stephen L et al. (2017) Direct 11CN-Labeling of Unprotected Peptides via Palladium-Mediated Sequential Cross-Coupling Reactions. J Am Chem Soc 139:7152-7155
Friis, Stig D; Pirnot, Michael T; Dupuis, Lauren N et al. (2017) A Dual Palladium and Copper Hydride Catalyzed Approach for Alkyl-Aryl Cross-Coupling of Aryl Halides and Olefins. Angew Chem Int Ed Engl 56:7242-7246
Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V et al. (2017) Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation. Chem Sci 8:4257-4263

Showing the most recent 10 out of 128 publications