The proposed work will provide detailed understanding of geometries, electronic structures, bonding, and chemical reaction mechanisms for copper complexes relevant to key postulated intermediates in copper enzymes.
In specific aim 1, the properties and bio-relevant reactivity of [CuO]+ and [CuOOR]2+ complexes will be characrterized in order to evaluate their feasibility as intermediates in oxidation catalysis by monocopper sites in enzymes. Specific emphasis will be placed on evaluating mechanistic hypotheses put forth for lytic polysaccharide monooxygenase (LPMO), which is of particular interest due to its use in biotechnology applications and the very strong (>95 kcal/mol) C-H bond of its substrate that is attacked.
In specific aim 2, a novel synthetic route will be used to access the first examples of complexes with the [CuIIOCuIII]3+ core, which has been postulated on the basis of theory to be particularly reactive and thus an attractive structural candidate for the key intermediate in particulate methane monooxygenase. This route will involve O-O bond cleavage of [CuII(- OOR)CuIII]3+ complexes using continuous irradiation or time-resolved transient spectroscopy methods in a collaborative effort, and will provide experimental evidence pertinent to the potential involvement of such species in pMMO and other catalytic systems that attack recalcitrant C-H bonds.
In specific aim 3, the preparation and exploration of the properties and reactivity of novel tricopper-peroxo [Cu3(O22-)]n+ (n = 2-4) and sulfide-containing [Cu3(-S)]n+ (n = 1-4) clusters supported by new multinucleating ligands are proposed. The studies of the former will test specific structural proposals for a key intermediate (?PI?) in O2 reduction to H2O by the tricopper active site in the multicopper oxidases (MCO's). The studies of the latter will aim to evaluate mechanistic hypotheses for the sulfide-bridged tetracopper CuZ site in the key global nitrogen cycle enzyme nitrous oxide reductase (N2OR), for which the targeted tricopper clusters will serve as a subunit model. Through these exploratory synthetic studies, thorough examinations of molecular properties, and detailed kinetic and mechanistic evaluation of biomimetic reactions, new insights into the fundamental chemistry of reactive species relevant to putative active site intermediates will be obtained. Ultimately, these synthetic studies will show what is possible for copper protein active sites in terms of structures, bonding, reactivity, and reaction pathways, thus providing a fundamental basis for understanding copper protein structure/function relationships. Such knowledge is critically important in view of the broad importance of copper-promoted biological reactions and, ultimately, will enable strategies for manipulation of enzyme function and development of new catalysts.

Public Health Relevance

Proteins that contain copper ions in their active sites represent a large and functionally important class of metallobiomolecules that play important roles in a wide range of processes that significantly impact human health either directly (e.g. synthesis of hormones, energy transduction in metabolism) or indirectly (e.g. within global elemental cycles and for biotechnological applications that impact climate, energy, and food). The proposed work involving studies of synthetic models of key enzyme intermediates aims to understand the nature of Cu-containing active sites in enzymes and delineate structure/function relationships through investigations of releant fundamental chemistry. In addition to enabling insights into copper protein active sites, the knowledge attained may also be useful for the development of new catalytic processes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM047365-28
Application #
9695215
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Anderson, Vernon
Project Start
1992-08-01
Project End
2022-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
28
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Washington University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Eisenhart, Reed J; Rudd, P Alex; Planas, Nora et al. (2015) Pushing the Limits of Delta Bonding in Metal-Chromium Complexes with Redox Changes and Metal Swapping. Inorg Chem 54:7579-92
Gagnon, Nicole; Tolman, William B (2015) [CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis? Acc Chem Res 48:2126-31
Neisen, Benjamin D; Solntsev, Pavlo; Halvagar, Mohammad R et al. (2015) Secondary Sphere Hydrogen Bonding in Monocopper Complexes of Potentially Dinucleating Bis(carboxamide) Ligands. Eur J Inorg Chem 2015:5856-5863
Dhar, Debanjan; Tolman, William B (2015) Hydrogen atom abstraction from hydrocarbons by a copper(III)-hydroxide complex. J Am Chem Soc 137:1322-9
Yee, Gereon M; Tolman, William B (2015) Transition metal complexes and the activation of dioxygen. Met Ions Life Sci 15:131-204
Halvagar, Mohammad Reza; Solntsev, Pavlo V; Lim, Hyeongtaek et al. (2014) Hydroxo-bridged dicopper(II,III) and -(III,III) complexes: models for putative intermediates in oxidation catalysis. J Am Chem Soc 136:7269-72
Halvagar, Mohammad Reza; Neisen, Benjamin; Tolman, William B (2013) Copper-, palladium-, and platinum-containing complexes of an asymmetric dinucleating ligand. Inorg Chem 52:793-9
Yang, Lei; Tolman, William B (2012) Type 1 copper site synthetic model complexes with increased redox potentials. J Biol Inorg Chem 17:285-91
Gupta, Aalo K; Tolman, William B (2012) Cu(I)/O2 chemistry using a ýý-diketiminate supporting ligand derived from N,N-dimethylhydrazine: a [Cu3O2]3+ complex with novel reactivity. Inorg Chem 51:1881-8
Taguchi, Taketo; Gupta, Rupal; Lassalle-Kaiser, Benedikt et al. (2012) Preparation and properties of a monomeric high-spin Mn(V)-oxo complex. J Am Chem Soc 134:1996-9

Showing the most recent 10 out of 52 publications