During development and growth of multicellular organisms the extracellular environment coordinates specification of particular differentiated cell fates with cell proliferation, survival, and morphological changes. The mechanisms by which cells sense and respond to the extracellular environment, and especially the features that distinguish distinct cellular responses, are fundamental to understanding cell and organ function in the normal organism and in pathology. Deficient cell survival is thought to underlie degenerative diseases and stroke. Deficient cell death, cell cycle regulation, and cellular properties such as invasiveness are thought to underlie initiation and progression of cancers. One class of related cell surface receptor proteins, the receptor tyrosine kinases (RTKs), play important roles in cell fate specification, survival, proliferation, motility and morphology. The fruit fly Drosophila melanogaster has proved useful for investigating receptor tyrosine kinase function, because its facile genetics permits the identification and analysis of specific protein functions in vivo. Such studies have identified many of the intracellular proteins that act during RTK-mediated cell fate specification in the retina, a tissue whose anatomy is particularly suited for developmental studies. A major goal is now to characterize the intracellular pathways of response to RTK signaling that regulate cell cycle progression, cell cycle arrest, survival and cell morphology. This will be achieved through genetic and molecular manipulation of RTK function in the developing retina. Such studies seek to reveal the in vivo roles of each ligand, receptor isoform, and intracellular signaling target for one particular RTK, the EGF receptor, and to identify those intracellular components that specify the particular type of response in each particular cell. Further studies will develop new reagents to focus on the molecular mechanisms of cell death and survival that are regulated by the EGFR. Together these studies will precisely dissect pathways of RTK function in vivo and identify those components that are specific for particular cellular responses important in human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM047892-10
Application #
6399337
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Tompkins, Laurie
Project Start
1992-08-01
Project End
2005-07-31
Budget Start
2001-08-01
Budget End
2002-07-31
Support Year
10
Fiscal Year
2001
Total Cost
$365,204
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Genetics
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Baker, Nicholas E; Brown, Nadean L (2018) All in the family: proneural bHLH genes and neuronal diversity. Development 145:
Li, Ke; Baker, Nicholas E (2018) Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners. Elife 7:
Wang, Lan-Hsin; Baker, Nicholas E (2018) Spatial regulation of expanded transcription in the Drosophila wing imaginal disc. PLoS One 13:e0201317
Baker, Nicholas E (2017) Patterning the eye: A role for the cell cycle? Dev Biol 430:263-265
Bhattacharya, Abhishek; Li, Ke; Quiquand, Manon et al. (2017) The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 431:309-320
Wang, Lan-Hsin; Baker, Nicholas E (2015) Salvador-Warts-Hippo pathway in a developmental checkpoint monitoring helix-loop-helix proteins. Dev Cell 32:191-202
Wang, Lan-Hsin; Baker, Nicholas E (2015) E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev Cell 35:269-80
Baker, Nicholas E; Li, Ke; Quiquand, Manon et al. (2014) Eye development. Methods 68:252-9
Baker, Nicholas E (2013) Developmental regulation of nucleolus size during Drosophila eye differentiation. PLoS One 8:e58266
Bhattacharya, Abhishek; Baker, Nicholas E (2012) The role of the bHLH protein hairy in morphogenetic furrow progression in the developing Drosophila eye. PLoS One 7:e47503

Showing the most recent 10 out of 35 publications