There is a growing need for safe and effective antifungal agents that stems from the rapidly increasing population of immunecompromised patients. Because human cells do not possess the machinery needed to construct cell walls, the process of wall construction in fungal pathogens provides an attractive target for novel therapeutics. The long-term objective of this project is to understand how yeast cells maintain the structural integrity of their cell walls during growth and morphogenesis. These studies are likely to reveal suitable molecular targets for the development of antifungal agents that display selective toxicity against fungal cells. The principal mechanism by which yeast cells detect and respond to wall stress is a signaling pathway mediated by two families of cell surface sensors, a small GTPase (Rho1), protein kinase C (Pkc1), and a MAP kinase cascade, although additional pathways also contribute to the structural integrity of the wall.
The specific aims of this project are 1) To determine if Pkc1 contributes to the G2/M transition by regulating the Mps1 protein kinase during spindle formation. Considerable evidence has accumulated to support a role for Pkc1 in mitosis. Our data implicates Pkc1 in the regulation of the Mps1 mitotic checkpoint kinase. We will test the hypothesis that Mps1 is a Pkc1 target and explore the mitotic effects of this phosphorylation. 2) To determine if Mpk1 acts as a transcription factor under conditions of cell wall stress. We have exciting evidence revealing that the Mpk1 MAP kinase can regulate the SBF transcription factor in a manner that is independent of its protein kinase activity. We propose to test the unusual notion that Mpk1 forms a ternary complex with SBF on the DMA and to explore the mechanism by which Mpk1 drives transcription. 3) To determine if the Wsc1 sensor is recruited to the site of polarized growth through a beta-1,3- glucan-binding domain. The extracellular region of Wsc1 possesses a cys-rich domain that we propose binds to glucan chains and is responsible for localization of Wsc1 to the glucan synthase. We will test this model by a combination of biochemical and molecular genetic approaches. 4) To understand how the PH domain proteins, Ask10 and Ypr115w, contribute to the maintenance of cell wall integrity. We have identified two redundant proteins whose loss of function results in cell lysis. We propose a multifaceted approach to establishing their role in the maintenance of cell wall integrity. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM048533-13
Application #
7090890
Study Section
Special Emphasis Panel (ZRG1-CSD-D (01))
Program Officer
Anderson, Richard A
Project Start
1992-09-30
Project End
2010-03-31
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
13
Fiscal Year
2006
Total Cost
$349,623
Indirect Cost
Name
Johns Hopkins University
Department
Biochemistry
Type
Schools of Public Health
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Lee, Jongmin; Levin, David E (2018) Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Mol Biol Cell 29:1904-1915
Liu, Li; Levin, David E (2018) Intracellular mechanism by which genotoxic stress activates yeast SAPK Mpk1. Mol Biol Cell 29:2898-2909
Lee, Jongmin; Liu, Li; Levin, David E (2018) Stressing out or stressing in: intracellular pathways for SAPK activation. Curr Genet :
Lee, Jongmin; Levin, David E (2015) Rgc2 Regulator of Glycerol Channel Fps1 Functions as a Homo- and Heterodimer with Rgc1. Eukaryot Cell 14:719-25
Lee, Jongmin; Reiter, Wolfgang; Dohnal, Ilse et al. (2013) MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27:2590-601
Beese-Sims, Sara E; Pan, Shih-Jung; Lee, Jongmin et al. (2012) Mutants in the Candida glabrata glycerol channels are sensitized to cell wall stress. Eukaryot Cell 11:1512-9
Beese-Sims, Sara E; Lee, Jongmin; Levin, David E (2011) Yeast Fps1 glycerol facilitator functions as a homotetramer. Yeast 28:815-9
Kim, Ki-Young; Levin, David E (2011) Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination. Cell 144:745-56
Levin, David E (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145-75
Kim, Ki-Young; Truman, Andrew W; Caesar, Stefanie et al. (2010) Yeast Mpk1 cell wall integrity mitogen-activated protein kinase regulates nucleocytoplasmic shuttling of the Swi6 transcriptional regulator. Mol Biol Cell 21:1609-19

Showing the most recent 10 out of 45 publications