Inhibition of neuronal nitric oxide synthase (NOS) appears to be a viable approach for the blockage of neurotoxicity resulting from stroke, Huntington, and Alzheimer diseases, and in the treatment of long-term depression and long-term potentiation. Seven general areas will be pursued directed at 1) synthesis and evaluation of conformationally-rigid peptidomimerics of Nomega-nitroarginine-Dbu and Nomega-nitroarginine-ornithine, our potent and selective nitric oxide synthase (NOS) inhibitors; 2) synthesis and evaluation of conformationally-rigid peptidomimetics of Nomega-nitroarginine-descarboxamides 3) synthesis and evaluation of peptidomimetics containing amide bond isosteres; 4) site-directed mutagenesis of groups that may bind to the sidechain amino group; 5) synthesis and evaluation of compounds to test the function of the nitro group in inhibition of NOS; 6) mechanisms of inactivation of NOS by known inactivators; and 7) X-ray crystal structures of inhibitor complexes with NOS and molecular modeling. The first series of compounds are 3- and 4-aminoproline- and 4- and 5-amino-2-pipecolic acid analogues of the selective dipeptides. Another series of compounds contains cyclic- and heterocyclic diamines, which will be substituted for straight-chain analogues we have made. Several series of compounds with isosteres of the amide bond of our selective inhibitors will be made containing beta- and gamma hydroxyethylene, ketomethylene, alkene, and alkane isosteres with both straight-chain and conformationally rigid (cyclic, aromatic, heteroaromatic) amines. To test our hypothesis for the function of the nitro group in selectivity, heteroaromatic analogues will be synthesized and evaluated for NOS inhibition. Previously we studied the inactivation of NOS by Nomega allylarginine and N-iminoethylomithine (MO). Structural and mechanistic studies will be carried out to support or modify our hypotheses for the inactivation mechanisms. Mechanisms of other compounds that appear to be structurally related to MO will be tested. A collaboration has been set up to carry out X-ray crystallography of our most potent and selective inhibitors bound to NOS to identify the important binding interactions, and the coordinates will be used for computer modeling studies using 3D-QSAR, DOCK, and GrowMol programs to identify new leads and modify the current ones.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM049725-11S1
Application #
7163166
Study Section
Bio-Organic and Natural Products Chemistry Study Section (BNP)
Program Officer
Fabian, Miles
Project Start
1994-04-01
Project End
2006-12-31
Budget Start
2006-01-01
Budget End
2006-12-31
Support Year
11
Fiscal Year
2006
Total Cost
$93,333
Indirect Cost
Name
Northwestern University at Chicago
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
160079455
City
Evanston
State
IL
Country
United States
Zip Code
60201
Li, Huiying; Evenson, Ryan J; Chreifi, Georges et al. (2018) Structural Basis for Isoform Selective Nitric Oxide Synthase Inhibition by Thiophene-2-carboximidamides. Biochemistry 57:6319-6325
Pensa, Anthony V; Cinelli, Maris A; Li, Huiying et al. (2017) Hydrophilic, Potent, and Selective 7-Substituted 2-Aminoquinolines as Improved Human Neuronal Nitric Oxide Synthase Inhibitors. J Med Chem 60:7146-7165
Cinelli, Maris A; Li, Huiying; Chreifi, Georges et al. (2017) Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors. J Med Chem 60:3958-3978
Do, Ha T; Wang, Heng-Yen; Li, Huiying et al. (2017) Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker. J Med Chem 60:9360-9375
Wang, Heng-Yen; Qin, Yajuan; Li, Huiying et al. (2016) Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibition by Optimization of the 2-Aminopyridine-Based Scaffold with a Pyridine Linker. J Med Chem 59:4913-25
Cinelli, Maris A; Li, Huiying; Pensa, Anthony V et al. (2016) Correction to Phenyl Ether- and Aniline-Containing 2-Aminoquinolines as Potent and Selective Inhibitors of Neuronal Nitric Oxide Synthase. J Med Chem 59:1246
Li, Huiying; Wang, Heng-Yen; Kang, Soosung et al. (2016) Electrostatic Control of Isoform Selective Inhibitor Binding in Nitric Oxide Synthase. Biochemistry 55:3702-7
Holden, Jeffrey K; Lewis, Matthew C; Cinelli, Maris A et al. (2016) Targeting Bacterial Nitric Oxide Synthase with Aminoquinoline-Based Inhibitors. Biochemistry 55:5587-5594
Mukherjee, Paramita; Li, Huiying; Sevrioukova, Irina et al. (2015) Novel 2,4-disubstituted pyrimidines as potent, selective, and cell-permeable inhibitors of neuronal nitric oxide synthase. J Med Chem 58:1067-88
Kang, Soosung; Li, Huiying; Tang, Wei et al. (2015) 2-Aminopyridines with a Truncated Side Chain To Improve Human Neuronal Nitric Oxide Synthase Inhibitory Potency and Selectivity. J Med Chem 58:5548-60

Showing the most recent 10 out of 97 publications