Conformational changes of proteins are required for nearly all biological functions and inappropriate conformational transitions are associated with numerous pathologies. In particular, processing of DNA and RNA molecules by proteins is fundamental to human health, including cell division and homeostasis, and disease, including cancer and viral infection. Comprehensive experimental information on the essential contributions of intramolecular dynamics to biological functions of proteins is critical for biophysical theories of equilibrium properties, such as heat capacity and thermal stability; for mechanistic interpretations of kinetic processes, such as enzyme catalysis and ligand recognition; and for design of novel proteins and protein ligands, including pharmaceutical agents. These fundamental issues are exemplified by the protein enzyme ribonuclease HI (EC 3.1.26.4, RNase H), the founding member of a nucleotidyl-transferase superfamily with a conserved structure and mechanism; other family members include transposase, retroviral integrase, Holliday junction resolvase, and RISC nuclease Argonaute. RNase H is distributed widely in prokaryotes and eukaryotes, and HIV retroviral reverse transcriptase contains a C-terminal RNase H domain. RNase H enzymes hydrolyze the RNA strand of DNA/RNA hybrid molecules involved in DNA replication and viral reverse transcription. The goal of the research program is to define the molecular determinants of catalytic activity of RNase H by comparing the structural, dynamical and enzymatic properties of homologous proteins derived from organisms adapted for life in different thermal environments. The extreme temperature dependence of protein conformational properties and activities means that thermal adaptation comprises a natural experiment exploring the linkage between structure, dynamics, and function.
The specific aims for this project are to (i) evaluate the role of the conformational equilibrium of the essential handle loop region in substrate recognition and thermal adaptation, (ii) quantify the importance of population shifts of other substrate-binding loops and amino acid sidechains in modulating affinity, and (iii) explicate the contributions of correlated conformationl dynamics, pre-organization, and conformational rearrangement of active site residues to activity. These objectives are supported by development of improved approaches for characterizing protein dynamics by NMR spectroscopy and MD simulation. This research program will explicate at a level of unprecedented detail molecular aspects of catalysis in this paradigmatic system that are critical for understanding normal and abnormal biological functions of proteins.

Public Health Relevance

Processing of DNA and RNA molecules by proteins is fundamental to human health, including cell division and homeostasis, and disease, including cancer and viral infection. Proteins of the ribonuclease H family of enzymes the subjects of the proposal and are paradigms for understanding aspects of catalysis of DNA/RNA hybrid molecules in replication, reverse transcription, and antisense technologies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM050291-21
Application #
8935830
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Wehrle, Janna P
Project Start
1994-08-01
Project End
2018-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
21
Fiscal Year
2015
Total Cost
$367,425
Indirect Cost
$136,496
Name
Columbia University (N.Y.)
Department
Biochemistry
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Hsu, Andrew; O'Brien, Paul A; Bhattacharya, Shibani et al. (2018) Enhanced spectral density mapping through combined multiple-field deuterium 13CH2D methyl spin relaxation NMR spectroscopy. Methods 138-139:76-84
Hsu, Andrew; Ferrage, Fabien; Palmer 3rd, Arthur G (2018) Analysis of NMR Spin-Relaxation Data Using an Inverse Gaussian Distribution Function. Biophys J 115:2301-2309
Zeiske, Tim; Baburajendran, Nithya; Kaczynska, Anna et al. (2018) Intrinsic DNA Shape Accounts for Affinity Differences between Hox-Cofactor Binding Sites. Cell Rep 24:2221-2230
O'Brien, Paul A; Palmer 3rd, Arthur G (2018) TROSY pulse sequence for simultaneous measurement of the 15N R1 and {1H}-15N NOE in deuterated proteins. J Biomol NMR 70:205-209
Zeiske, Tim; Stafford, Kate A; Palmer 3rd, Arthur G (2016) Thermostability of Enzymes from Molecular Dynamics Simulations. J Chem Theory Comput 12:2489-92
Palmer 3rd, Arthur G (2016) A dynamic look backward and forward. J Magn Reson 266:73-80
Gill, Michelle L; Byrd, R Andrew; Palmer III, Arthur G (2016) Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region. Phys Chem Chem Phys 18:5839-49
Kaplan, Anna; Gaschler, Michael M; Dunn, Denise E et al. (2015) Small molecule-induced oxidation of protein disulfide isomerase is neuroprotective. Proc Natl Acad Sci U S A 112:E2245-52
Stafford, Kate A; Trbovic, Nikola; Butterwick, Joel A et al. (2015) Conformational preferences underlying reduced activity of a thermophilic ribonuclease H. J Mol Biol 427:853-66
O'Connell, Nichole E; Lelli, Katherine; Mann, Richard S et al. (2015) Asparagine deamidation reduces DNA-binding affinity of the Drosophila melanogaster Scr homeodomain. FEBS Lett 589:3237-41

Showing the most recent 10 out of 44 publications