The long term goal of this research is to understand a signal transduction pathway that regulates programs of gene expression by controlling the subcellular localization of regulatory proteins. In the fruit fly Drosophila, intracellular transduction of a signal received at the surface of the embryo promotes nuclear translocation of the transcription factor Dorsal and thereby establishes the dorsoventral axis. In flies, plants, and mammals, homologous pathways direct nuclear import of related transcription factors as a critical step in immune or defensive responses. In addition to Dorsal, the Drosophila dorsoventral signaling pathway requires the transmembrane receptor Toll, the scaffolding protein Tube, the protein kinase Pelle, and the inhibitor Cactus. The fact that these five pathway components have been characterized at both the genetic and molecular level and can be assayed by embryo microinjection makes this system particularly amenable to experimental investigation. It is now possible, therefore, to address fundamental questions about the mechanism for signal transduction. The first two specific aims of this proposal will focus on the initiation of intracellular signaling. The potential function of the actin-binding protein Filamin as a link between Toll and Tube will be investigated in coimmunoprecipitation and genetic interaction studies. Additional experiments will address the mechanism and significance of Tube relocalization in response to Toll activation. The third and fourth aims will address how the signal is propagated. Autophosphorylation will be explored as a potential mechanism for Pelle regulation in vivo. Molecular and biochemical studies will also be carried out to determine which pathway proteins undergo Pelle-mediated phosphorylation in embryos. The fifth and final specific aim will focus on the spatial regulation of signaling within the syncytial environment of the blastoderm embryo. Given the conserved nature of the signaling pathway, the results of the proposed research should be of substantial interest with regard not only to pattern formation in the insect embryo, but also to signal transduction and immunity in a broad range of plants and animals.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM050545-05
Application #
2690071
Study Section
Cellular Biology and Physiology Subcommittee 1 (CBY)
Project Start
1994-08-01
Project End
2002-07-31
Budget Start
1998-08-01
Budget End
1999-07-31
Support Year
5
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Lindsay, Scott A; Lin, Samuel J H; Wasserman, Steven A (2018) Short-Form Bomanins Mediate Humoral Immunity in Drosophila. J Innate Immun 10:306-314
Higgins, ReneƩ; Gendron, Joshua M; Rising, Lisa et al. (2015) The Unfolded Protein Response Triggers Site-Specific Regulatory Ubiquitylation of 40S Ribosomal Proteins. Mol Cell 59:35-49
Clemmons, Alexa W; Lindsay, Scott A; Wasserman, Steven A (2015) An effector Peptide family required for Drosophila toll-mediated immunity. PLoS Pathog 11:e1004876
Ko, Kang I; Root, Cory M; Lindsay, Scott A et al. (2015) Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. Elife 4:
Zhou, Bo; Lindsay, Scott A; Wasserman, Steven A (2015) Alternative NF-?B Isoforms in the Drosophila Neuromuscular Junction and Brain. PLoS One 10:e0132793
Lindsay, Scott A; Wasserman, Steven A (2014) Conventional and non-conventional Drosophila Toll signaling. Dev Comp Immunol 42:16-24
Towb, Par; Sun, Huaiyu; Wasserman, Steven A (2009) Tube Is an IRAK-4 homolog in a Toll pathway adapted for development and immunity. J Innate Immun 1:309-21
Busse, Matthew S; Arnold, Christopher P; Towb, Par et al. (2007) A kappaB sequence code for pathway-specific innate immune responses. EMBO J 26:3826-35
Guan, Xiao; Middlebrooks, Brooke W; Alexander, Sherry et al. (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci U S A 103:16794-9
Sun, Huaiyu; Towb, Par; Chiem, Daniel N et al. (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 23:100-10

Showing the most recent 10 out of 18 publications