Cilia have diverse roles in motility, sensory reception and signaling, and defects in cilia function contribute to human diseases such as polycystic kidney disease (PKD) and Bardet Biedl Syndome (BBS). Functionally coordinated intraflagellar transport (IFT) motors assemble and maintain cilia by transporting ciliary precursors, bound to protein complexes called IFT particles, from the base of the cilium to their site of assembly at the distal tip. We are studying the IFT motors that build sensory cilia on the dendritic endings of chemosensory neurons of the model organism Caenorhabditis elegans. Using a time-lapse fluorescence microscopy assay to observe IFT in wild-type and ciliary mutant animals, we observed that two kinesin-2 motors, heterotrimeric kinesin-ll and homodimeric OSM-3 kinesin, function as anterograde IFT motors, whereas IFT dynein drives retrograde IFT. The work proposed here is aimed at illuminating the mechanisms of IFT in this system.
The specific aims are: -1. To use in vivo transport assays and in vitro motility assays to probe the mechanisms by which functionally coordinated kinesin-ll and OSM-3 motors cooperate to move an IFT-particle along the cilium. - 2. To use ciliary mutants and transport assays to dissect mechanisms of IFT in sensory cilia by;a. analyzing a putative OSM-3 docking-activation complex;b. identifying molecules driving the delivery of the IFT machinery to the base of the cilium and regulating the reorganization of IFT components and motor switching at ciliary turnaround zones;and c. identifying the cargo molecules that the IFT machinery delivers to the sensory ciliary axoneme, membrane or matrix. In addressing these specific aims we hope to learn how IFT motors are coordinated and controlled, what specific cargoes are transported along cilia by the IFT machinery, how components of the IFT machinery are transported through the cytoplasm, and how defects in IFT may contribute to ciliary dysfunction and disease.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Cell Structure and Function (CSF)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Prevo, Bram; Scholey, Jonathan M; Peterman, Erwin J G (2017) Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 284:2905-2931
Prevo, Bram; Mangeol, Pierre; Oswald, Felix et al. (2015) Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia. Nat Cell Biol 17:1536-45
Scholey, Jonathan M (2013) Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 29:443-69
Scholey, Jonathan M (2013) Compare and contrast the reaction coordinate diagrams for chemical reactions and cytoskeletal force generators. Mol Biol Cell 24:433-9
Brust-Mascher, Ingrid; Ou, Guangshuo; Scholey, Jonathan M (2013) Measuring rates of intraflagellar transport along Caenorhabditis elegans sensory cilia using fluorescence microscopy. Methods Enzymol 524:285-304
Scholey, Jonathan M (2012) Kinesin-2 motors transport IFT-particles, dyneins and tubulin subunits to the tips of Caenorhabditis elegans sensory cilia: relevance to vision research? Vision Res 75:44-52
Hao, Limin; Thein, Melanie; Brust-Mascher, Ingrid et al. (2011) Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 13:790-8
Hao, Limin; Efimenko, Evgeni; Swoboda, Peter et al. (2011) The retrograde IFT machinery of C. elegans cilia: two IFT dynein complexes? PLoS One 6:e20995
Pan, Xiaoyu; Acar, Seyda; Scholey, Jonathan M (2010) Torque generation by one of the motor subunits of heterotrimeric kinesin-2. Biochem Biophys Res Commun 401:53-7
Hao, Limin; Scholey, Jonathan M (2009) Intraflagellar transport at a glance. J Cell Sci 122:889-92

Showing the most recent 10 out of 29 publications