Dr. Sale proposes to define the mechanisms that regulate dynein activity by modulating motor function and controlling where the motor is localized.
Two specific aims are proposed: (1) to determine how changes in IC138 phosphorylation regulate the I1 dynein complex; and (2) to determine the mechanism by which I1 is targeted to the inner doublet microtubules, and to test the hypothesis that axonemal kinase and phosphatase are anchored.
King, Stephen M; Sale, Winfield S (2018) Fifty years of microtubule sliding in cilia. Mol Biol Cell 29:698-701 |
Hunter, Emily L; Lechtreck, Karl; Fu, Gang et al. (2018) The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol Biol Cell 29:886-896 |
Yamamoto, Ryosuke; Obbineni, Jagan M; Alford, Lea M et al. (2017) Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms. PLoS Genet 13:e1006996 |
Alford, Lea M; Stoddard, Daniel; Li, Jennifer H et al. (2016) The nexin link and B-tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme. Cytoskeleton (Hoboken) 73:331-40 |
Vasudevan, Krishna Kumar; Song, Kangkang; Alford, Lea M et al. (2015) FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c. Mol Biol Cell 26:696-710 |
Vasudevan, Krishna Kumar; Jiang, Yu-Yang; Lechtreck, Karl F et al. (2015) Kinesin-13 regulates the quantity and quality of tubulin inside cilia. Mol Biol Cell 26:478-94 |
Yang, Fan; Pavlik, Jacqueline; Fox, Laura et al. (2015) Alcohol-induced ciliary dysfunction targets the outer dynein arm. Am J Physiol Lung Cell Mol Physiol 308:L569-76 |
Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel et al. (2014) Actin is required for IFT regulation in Chlamydomonas reinhardtii. Curr Biol 24:2025-32 |
Viswanadha, Rasagnya; Hunter, Emily L; Yamamoto, Ryosuke et al. (2014) The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking. Cytoskeleton (Hoboken) 71:573-86 |
Yamamoto, Ryosuke; Song, Kangkang; Yanagisawa, Haru-Aki et al. (2013) The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. J Cell Biol 201:263-78 |
Showing the most recent 10 out of 36 publications