(From the application abstract:) The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate, the reaction that determines the metabolic fate of carbohydrates. The enzymatic activity of the mammalian PDC is regulated by reversible phosphorylation. The specific kinase (pyruvate dehydrogenase kinase or PDK) converts it to an inactive form that can be reactivated only by a specific phosphatase. The hyperphosphorylation of PDC observed in diabetes, ischemia, and metabolic acidosis directly contributes to the morbidity and mortality associated with these conditions. It is generally believed that the hyperphosphorylation is due, in part, to enhanced kinase activity. Recently this laboratory provided the first data indicating that, in humans and other mammals there are multiple isoenzymes of PDK. The physiological significance of multiple isoenzymes is currently unknown. The results available thus far strongly suggest that the isoenzymes are functionally different. The isoenzyme PDK2 is likely to be responsible for the * short-term regulation of PDC activity. The inducible isoenzyme PDK4, in contrast, may be mainly responsible for long-term control. Its over-expression in diabetes is likely a leading cause of the hyperphosphorylation of PDC that, in turn, contributes to hyperglycemia. This proposal is aimed to further elucidate the structure, function, regulation and physiological significance of the multiple isoenzymes of PDK. Its major goals are: 1) to determine the three dimensional structure of pyruvate dehydrogenase kinase; 2) to elucidate the molecular basis for catalysis and substrate recognition by pyruvate dehydrogenase kinase; 3) to further define the molecular mechanisms responsible for regulation of pyruvate dehydrogenase kinase activity; 4) to characterize the molecular interactions between isozymes, as well as between isozymes and pyruvate dehydrogenase complex under normal conditions, as well as under starvation and diabetes. These goals will be achieved though a combination of structure/functional analysis, biochemical characterization, as well as more physiologically oriented studies of isozymes under conditions such as starvation and diabetes. This will allow us to understand how this structurally unique protein kinase functions. It will also allow us to take the first step towards the design of isoenzyme- specific drugs that may alleviate some of the symptoms and prevent complications associated with diabetes, ischemia and acidosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM051262-07
Application #
6125404
Study Section
Medical Biochemistry Study Section (MEDB)
Program Officer
Ikeda, Richard A
Project Start
1995-07-01
Project End
2004-06-30
Budget Start
2000-07-01
Budget End
2001-06-30
Support Year
7
Fiscal Year
2000
Total Cost
$218,005
Indirect Cost
Name
University of Missouri Kansas City
Department
Biochemistry
Type
Schools of Medicine
DUNS #
800772162
City
Kansas City
State
MO
Country
United States
Zip Code
64110
Klyuyeva, Alla; Tuganova, Alina; Popov, Kirill M (2008) Allosteric coupling in pyruvate dehydrogenase kinase 2. Biochemistry 47:8358-66
Tuganova, Alina; Klyuyeva, Alla; Popov, Kirill M (2007) Recognition of the inner lipoyl-bearing domain of dihydrolipoyl transacetylase and of the blood glucose-lowering compound AZD7545 by pyruvate dehydrogenase kinase 2. Biochemistry 46:8592-602
Klyuyeva, Alla; Tuganova, Alina; Popov, Kirill M (2007) Amino acid residues responsible for the recognition of dichloroacetate by pyruvate dehydrogenase kinase 2. FEBS Lett 581:2988-92
Tuganova, Alina; Popov, Kirill M (2005) Role of protein-protein interactions in the regulation of pyruvate dehydrogenase kinase activity. Biochem J 387:147-53
Klyuyeva, Alla; Tuganova, Alina; Popov, Kirill M (2005) The carboxy-terminal tail of pyruvate dehydrogenase kinase 2 is required for the kinase activity. Biochemistry 44:13573-82
Karpova, Tatiana; Danchuk, Svitlana; Huang, Boli et al. (2004) Probing a putative active site of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 (PDP1c) by site-directed mutagenesis. Biochim Biophys Acta 1700:43-51
Burelle, Yan; Wambolt, Richard B; Grist, Mark et al. (2004) Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol 287:H1055-63
Karpova, Tatiana; Danchuk, Svitlana; Kolobova, Elena et al. (2003) Characterization of the isozymes of pyruvate dehydrogenase phosphatase: implications for the regulation of pyruvate dehydrogenase activity. Biochim Biophys Acta 1652:126-35
Boulatnikov, Igor; Popov, Kirill M (2003) Formation of functional heterodimers by isozymes 1 and 2 of pyruvate dehydrogenase kinase. Biochim Biophys Acta 1645:183-92
Tuganova, Alina; Boulatnikov, Igor; Popov, Kirill M (2002) Interaction between the individual isoenzymes of pyruvate dehydrogenase kinase and the inner lipoyl-bearing domain of transacetylase component of pyruvate dehydrogenase complex. Biochem J 366:129-36

Showing the most recent 10 out of 21 publications