Palmitoylation is the posttranslational addition of a fatty acid to protein through a thioester linkage. The reversibility of protein palmitoylation distinguishes it from the static lipid modifications isoprenylation and N-myristoylation and makes it an attractive mechanism for regulating protein localization and activity. Heterotrimeric G proteins and Ras are anchored to the inner leaflet of the plasma membrane by covalent lipid modification, including acylation with palmitate. Palmitate turnover on signal transducers regulates their trafficking between intracellular compartments and the plasma membrane, thereby influencing where and when signals are transmitted. The goal of this project is to understand how palmitoylation of signaling proteins is regulated. The breakthrough in this field was our discovery of a large family of protein acyltransferases or PATs. The signature feature of these proteins is a DHHC-cysteine rich domain that is required for PAT activity in vitro and in vivo. We have shown that different DHHC proteins are localized in different subcellular compartments in yeast and in mammalian cells. In yeast, we identified a vacuolar DHHC protein that modifies Vac8, a N-myristoylated protein required for vacuole fusion. In mammalian cells, we identified a human PAT (DHHC9- GCP16) localized in the Golgi that recognizes a different type of substrate - Ras, a C-terminally farnesylated protein. Ourcentral hypothesis is that the biological specificity of protein palmitoylation is determined by: (1) the biochemical specificity of a PAT for certain structural or functional classes of substrates and (2) the localization of a specific PAT or unique set of PATs to a given subcellular compartment.
In Aim 1, we will identify the determinants that allow a PAT to recognize a specific substrate and test whether a single PAT recognizes multiple classes of substrates using the yeast enzyme Pfa3 and its substrate Vac8, a model of a physiologically relevant enzyme and substrate pair.
Aims 2 -4 are focused on addressing how the DHHC proteins are integrated functionally and spatially into signal transduction pathways.
In Aim 2, we propose to identify which DHHC proteins modify Ga in yeast and determine in which compartments they function.
In Aim 3, we will determine how the human Ras PAT DHHC9- GCP16 regulates Ras localization and function in cells.
In Aim 4, we will identify which DHHC proteins palmitoylate Ga in mammalian cells and determine how they affect Ga localization and trafficking. Completion of these aims will provide novel insights into a regulatory mechanism for signaling proteins that are central to the regulation of numerous physiological processes and whose function is perturbed in cancer, heart disease, and mental illness. These studies lay the groundwork for development of inhibitors of DHHC proteins, which may be useful in developing treatments for disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM051466-13A1S1
Application #
7481550
Study Section
Special Emphasis Panel (ZRG1-CB-G (03))
Program Officer
Dunsmore, Sarah
Project Start
1996-06-01
Project End
2011-04-30
Budget Start
2007-07-01
Budget End
2008-04-30
Support Year
13
Fiscal Year
2007
Total Cost
$12,806
Indirect Cost
Name
Washington University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Linder, Maurine E; Jennings, Benjamin C (2013) Mechanism and function of DHHC S-acyltransferases. Biochem Soc Trans 41:29-34
Nishimura, Akiyuki; Linder, Maurine E (2013) Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding. Mol Cell Biol 33:1417-29
Hilgemann, Donald W; Fine, Michael; Linder, Maurine E et al. (2013) Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts. Elife 2:e01293
Lai, Jianbin; Linder, Maurine E (2013) Oligomerization of DHHC protein S-acyltransferases. J Biol Chem 288:22862-70
Jennings, Benjamin C; Linder, Maurine E (2012) DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J Biol Chem 287:7236-45
Aittaleb, Mohamed; Nishimura, Akiyuki; Linder, Maurine E et al. (2011) Plasma membrane association of p63 Rho guanine nucleotide exchange factor (p63RhoGEF) is mediated by palmitoylation and is required for basal activity in cells. J Biol Chem 286:34448-56
Jia, Lixia; Linder, Maurine E; Blumer, Kendall J (2011) Gi/o signaling and the palmitoyltransferase DHHC2 regulate palmitate cycling and shuttling of RGS7 family-binding protein. J Biol Chem 286:13695-703
Ahearn, Ian M; Tsai, Frederick D; Court, Helen et al. (2011) FKBP12 binds to acylated H-ras and promotes depalmitoylation. Mol Cell 41:173-85
Hang, Howard C; Linder, Maurine E (2011) Exploring protein lipidation with chemical biology. Chem Rev 111:6341-58
Jernigan, Kristin K; Cselenyi, Christopher S; Thorne, Curtis A et al. (2010) Gbetagamma activates GSK3 to promote LRP6-mediated beta-catenin transcriptional activity. Sci Signal 3:ra37

Showing the most recent 10 out of 38 publications