The emergence of multidrug-resistant infections is on the rise worldwide at an alarming pace, underscoring the need for novel therapeutic agents. Self-assembling peptide nanotubes are a versatile class of synthetic supramolecular structures with considerable potential for addressing this urgent need. We have shown that 6- and 8-residue cyclic D, L-alpha-peptides can possess potent and selective in vitro and in vivo (mice) activities against multidrug-resistant bacterial infections including vancomycin-resistant Enterococcus faecalis (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). The supramolecular approach has also been applied to the design and discovery of a new class of broad- spectrum antiviral agents. An 8-residue cyclic D, L-alpha-peptide has been shown to specifically prevent the development of low pH in endocytic vesicles, arrest the escape of virions from the endosome, and abrogate virus infections without an apparent adverse effect on cell viability. The proposed studies are aimed at further advancing the fundamental design aspects as well as practical biomedical applications of self-assembling peptide nanotubes. The scope of the proposed studies range from the design of novel heterocyclic alpha,epsilon- and alpha,beta-cyclic peptide nanotubes, metal ion-dependent systems, glycopeptides, and prodrug concepts to rational and combinatorial library approaches directed at the design and discovery of new classes of antiviral and antibacterial agents.
The specific aims of the proposed research program are: (1) Design, synthesis, and characterization of novel self-assembling peptide nanotubes based on cyclic alpha, beta-, and alpha, epsilon-heterocyclic peptide backbone architectures. (2) Design, synthesis, and characterization of metal ion-dependent self-assembling cyclic D,L-alpha-peptide nanotubes and their utility in the design of Ca2+dependent membrane active species and antibacterial agents. (3) Investigate prodrug design concepts based on backbone N-alkylated antibacterial cyclic D, L-alpha-peptides. (4) Assess the utility of Ser (beta-GlcNH2) as the cationic amino acid in the design of membrane-active antibacterial cyclic D, L-alpha- glycopeptides. (5) Design, synthesis, selection, and characterization of antibacterial and antiviral self- assembling cyclic peptides, including the use of directed combinatorial libraries of cyclic D, L-alpha-, D, L-alpha- glyco-, and alpha, beta-peptides; establishment of a comprehensive data set for quantitative structure-activity relationship analyses; exploring synergistic activity of cyclic D, L-alpha-peptide binary mixtures; and in vivo efficacy, toxicity, and pharmacokinetics of selected antibacterial cyclic peptides.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM052190-12
Application #
7037757
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Fabian, Miles
Project Start
1995-01-01
Project End
2009-12-31
Budget Start
2006-01-03
Budget End
2006-12-31
Support Year
12
Fiscal Year
2006
Total Cost
$418,275
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Montenegro, Javier; Ghadiri, M Reza; Granja, Juan R (2013) Ion channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 46:2955-65
Montero, Ana; Gastaminza, Pablo; Law, Mansun et al. (2011) Self-assembling peptide nanotubes with antiviral activity against hepatitis C virus. Chem Biol 18:1453-62
Hutt, Darren M; Olsen, Christian A; Vickers, Chris J et al. (2011) Potential Agents for Treating Cystic Fibrosis: Cyclic Tetrapeptides that Restore Trafficking and Activity of ?F508-CFTR. ACS Med Chem Lett 2:703-707
Montero, Ana; Beierle, John M; Olsen, Christian A et al. (2009) Design, synthesis, biological evaluation, and structural characterization of potent histone deacetylase inhibitors based on cyclic alpha/beta-tetrapeptide architectures. J Am Chem Soc 131:3033-41
Motiei, Leila; Rahimipour, Shai; Thayer, Desiree A et al. (2009) Antibacterial cyclic D,L-alpha-glycopeptides. Chem Commun (Camb) :3693-5
Olsen, Christian A; Ghadiri, M Reza (2009) Discovery of potent and selective histone deacetylase inhibitors via focused combinatorial libraries of cyclic alpha3beta-tetrapeptides. J Med Chem 52:7836-46
Horne, W Seth; Olsen, Christian A; Beierle, John M et al. (2009) Probing the bioactive conformation of an archetypal natural product HDAC inhibitor with conformationally homogeneous triazole-modified cyclic tetrapeptides. Angew Chem Int Ed Engl 48:4718-24
Beierle, John M; Horne, W Seth; van Maarseveen, Jan H et al. (2009) Conformationally homogeneous heterocyclic pseudotetrapeptides as three-dimensional scaffolds for rational drug design: receptor-selective somatostatin analogues. Angew Chem Int Ed Engl 48:4725-9
Cheng, Guofeng; Montero, Ana; Gastaminza, Pablo et al. (2008) A virocidal amphipathic {alpha}-helical peptide that inhibits hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 105:3088-93
Fletcher, James T; Finlay, John A; Callow, Maureen E et al. (2007) A combinatorial approach to the discovery of biocidal six-residue cyclic D,L-alpha-peptides against the bacteria methicillin-resistant Staphylococcus aureus (MRSA) and E. coli and the biofouling algae Ulva linza and Navicula perminuta. Chemistry 13:4008-13

Showing the most recent 10 out of 19 publications