The m7GpppN cap is a defining feature of eukaryal messenger RNA that is required for mRNA stability and efficient translation. Our long-term goal has been to understand the mechanism of cap formation and how capping is coupled to transcription. Capping entails three enzymatic reactions: (i) the 5'triphosphate end of the pre-mRNA is hydrolyzed to a diphosphate by RNA triphosphatase (TPase);(ii) the diphosphate RNA end is capped with GMP by RNA guanylyltransferase (GTase);and (iii) the GpppN cap is methylated by RNA (guanine-N7) methyltransferase (MTase). The capping enzymes are directed to nascent mRNAs by binding to the phosphorylated carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II), which is composed of a tandem array of heptapeptide repeats (consensus: Y1S2P3T4S5P6S7). The inherently plastic CTD structure is sculpted by dynamic phosphorylation and dephosphorylation of the heptad serine residues. The CTD structure transmits informational cues about the state of the transcription machinery (a CTD code) that is """"""""read"""""""" by CTD receptors. Our goal is to understand how CTD information content is specified and conveyed to CTD receptor proteins (especially the capping enzymes). Our genetic dissection of what is essential for fission yeast CTD function is providing new insights to the CTD code, including: (i) structure-activity relations at essential residues;(ii) the distinctive roles of position- specific phosphorylations in sexual differentiation and vegetative growth;and (iii) the ability to bypass """"""""CTD pathologies"""""""" caused by S2A and S5A mutations. We've thereby demonstrated that the essential function of the Ser5-P mark in vivo is to recruit the capping enzymes. Capping enzymes also bind to the essential Pol II elongation factor Spt5, which, in conjunction with Spt4, elicits an elongation arrest at promoter-proximal sites that provides a temporal window for capping of nascent mRNAs. Fission yeast Spt5 binds to the capping enzymes via a distinctive """"""""Spt5 CTD"""""""" composed of 18 repeats of a nonapeptide motif (consensus: T1P2A3W4N5S6G7S8K9). Genetic studies indicate that the CTDs of fission yeast Pol II and Spt5 play overlapping roles in recruiting the capping enzymes in vivo. This project aims to dissect the functions and structure-activity relations of the Pol II and Spt5 CTDs and the impact of CTD mutations on gene expression. We will determine structures of capping enzymes in complexes with the Pol II and Spt5 CTDs, and then assess genetically the functions of the capping enzyme-CTD interfaces. Capping enzymes discriminate different Pol II CTD phosphorylation arrays, implying that remodeling of the CTD by protein kinases and phosphatases is a means to regulate mRNA processing. Our biochemical and crystallographic studies of S. pombe Fcp1, an essential CTD phosphatase that preferentially hydrolyzes Ser2- PO4, are yielding deep insights to catalysis of CTD dephosphorylation in vitro. In this project, we propose to dissect genetically and biochemically the phosphoprotein substrate specificity of S. pombe Fcp1 and the requirements for Fcp1 function in vivo.

Public Health Relevance

mRNA capping enzymes are attractive targets for anti-infective drug discovery in light of the stark differences in the structures, mechanisms, and pharmacological sensitivities of the capping apparatus in humans versus fungal and protozoan pathogens. CTD phosphorylation dynamics orchestrate eukaryal gene expression. Two of the enzymes we study that modulate CTD structure are implicated in human pathology. A partial deficiency of human CTD phosphatase Fcp1 is associated with the autosomal recessive developmental disorder characterized by cataracts, facial dysmorphism, and peripheral neuropathy. Cdk9 CTD kinase activity is critical for HIV replication and Cdk9 dysregulation is associated with cardiac hypertrophy.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Bender, Michael T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Garg, Angad; Sanchez, Ana M; Shuman, Stewart et al. (2018) A long noncoding (lnc)RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flanking prt lncRNA and pho1 genes. J Biol Chem 293:4456-4467
Garg, Angad; Goldgur, Yehuda; Schwer, Beate et al. (2018) Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis. Nucleic Acids Res 46:11262-11273
Roth, Allen J; Shuman, Stewart; Schwer, Beate (2018) Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24. RNA 24:853-864
Sanchez, Ana M; Shuman, Stewart; Schwer, Beate (2018) Poly(A) site choice and Pol2 CTD Serine-5 status govern lncRNA control of phosphate-responsive tgp1 gene expression in fission yeast. RNA 24:237-250
Sanchez, Ana M; Shuman, Stewart; Schwer, Beate (2018) RNA polymerase II CTD interactome with 3' processing and termination factors in fission yeast and its impact on phosphate homeostasis. Proc Natl Acad Sci U S A 115:E10652-E10661
Schwer, Beate; Sanchez, Ana M; Garg, Angad et al. (2017) Defining the DNA Binding Site Recognized by the Fission Yeast Zn2Cys6 Transcription Factor Pho7 and Its Role in Phosphate Homeostasis. MBio 8:
Schwer, Beate; Roth, Allen J; Shuman, Stewart (2017) Will the circle be unbroken: specific mutations in the yeast Sm protein ring expose a requirement for assembly factor Brr1, a homolog of Gemin2. RNA 23:420-430
Agarwal, Radhika; Schwer, Beate; Shuman, Stewart (2016) Structure-function analysis and genetic interactions of the Luc7 subunit of the Saccharomyces cerevisiae U1 snRNP. RNA 22:1302-10
Smith, Paul; Ho, C Kiong; Takagi, Yuko et al. (2016) Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. MBio 7:e00058-16
Schwer, Beate; Kruchten, Joshua; Shuman, Stewart (2016) Structure-function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring. RNA 22:1320-8

Showing the most recent 10 out of 91 publications