One of the paradoxes of modern genetics is the contrast between the tremendous technological advances in sequencing and genotyping during the past decade and the slow progress in identifying genes for complex diseases. These diseases involve subtle disruptions of biochemical and developmental pathways and display substantial genetic heterogeneity and gene-gene and gene-environmental interactions. It is now evident that studies will have to increase dramatically in scale. Much larger patient populations must be examined with much greater intensity, and mouse studies must go hand in hand with human studies. To handle the massive increases in data flow and extract the maximum amount of information from it, better statistical analysis tools must be made available to the human genetics community. The current grant supports construction of new statistical methods and their translation into user-friendly software via the widely used programs Mendel and SimWalk. Under the auspices of the grant, we will tackle a series of related projects on haplotyping, linkage mapping, disease-marker association testing, and inbred-strain mapping. These advances will free statistical analysis from restrictive assumptions, deal with multivariate traits in a unified manner, and enable understanding of genetic interactions and causality.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM053275-13
Application #
7212125
Study Section
Mammalian Genetics Study Section (MGN)
Program Officer
Anderson, Richard A
Project Start
1995-08-01
Project End
2008-03-31
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
13
Fiscal Year
2007
Total Cost
$441,480
Indirect Cost
Name
University of California Los Angeles
Department
Biostatistics & Other Math Sci
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Paul, Kimberly C; Sinsheimer, Janet S; Cockburn, Myles et al. (2018) NFE2L2, PPARGC1?, and pesticides and Parkinson's disease risk and progression. Mech Ageing Dev 173:1-8
Lin, Liang-Yu; Chun Chang, Sunny; O'Hearn, Jim et al. (2018) Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3 (Bethesda) 8:3499-3506
Gilbert, Princess S; Wu, Jing; Simon, Margaret W et al. (2018) Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Mol Phylogenet Evol 126:116-128
Lake, James A; Larsen, Joseph; Tran, Dan Thy et al. (2018) Uncovering the Genomic Origins of Life. Genome Biol Evol 10:1705-1714
vonHoldt, Bridgett M; Ji, Sarah S; Aardema, Matthew L et al. (2018) Activity of Genes with Functions in Human Williams-Beuren Syndrome Is Impacted by Mobile Element Insertions in the Gray Wolf Genome. Genome Biol Evol 10:1546-1553
Shi, Huwenbo; Mancuso, Nicholas; Spendlove, Sarah et al. (2017) Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits. Am J Hum Genet 101:737-751
Keys, Kevin L; Chen, Gary K; Lange, Kenneth (2017) Iterative hard thresholding for model selection in genome-wide association studies. Genet Epidemiol 41:756-768
Crandall, Carolyn J; Manson, JoAnn E; Hohensee, Chancellor et al. (2017) Association of genetic variation in the tachykinin receptor 3 locus with hot flashes and night sweats in the Women's Health Initiative Study. Menopause 24:252-261
Zhang, Yiwen; Zhou, Hua; Zhou, Jin et al. (2017) Regression Models For Multivariate Count Data. J Comput Graph Stat 26:1-13
Paul, Kimberly C; Sinsheimer, Janet S; Cockburn, Myles et al. (2017) Organophosphate pesticides and PON1 L55M in Parkinson's disease progression. Environ Int 107:75-81

Showing the most recent 10 out of 156 publications