Hospital acquired pneumonia costs up to 2 billion dollars per year in the United States, and any inexpensive therapy which reduces this septic complication could greatly impact health care costs. Enteral feeding significantly reduces the complications of pneumonia compared with intravenous (IV-TPN) feedings by 60-70 percent in trauma patients. Our experimental and clinical work implicates previously unrecognized defects in mucosal immunity which develop when the intestinal tract is not stimulated with enteral feeding or when surrogates of enteral feeding are not provided. The principal specific immunologic defense at mucosal surfaces is secretory IgA produced by the mucosal-associated lymphoid tissue (MALT). The principal anatomic site for immunologic sensitization of Peyer's patches within the small intestine. Adhesion molecules direct unsensitized immunocytes through the Peyer's patches where these lymphocytes are sensitized and change their own surface integrins. They are then directed to both intestinal and extraintestinal sites, such as the respiratory tract, where they produce IgA against those antigens. The antibody binds to bacteria, preventing their attachment and their ability to infect. This proposal focuses on how route and type of nutrition affects the expression of the specific adhesion molecules, modified MAdCAM-1, unmodified MAdCAM-1, and ICAM-1 which are important in directing unsensitized immunocytes into Peyer's patches. The proposal tests the hypothesis that interaction between these adhesion molecules and their ligands on naive T and B cells are critical in maintaining mucosal immunity in both intestinal and extraintestinal sites. The proposal is designed to test the hypothesis that inhibition of these interactions recreates the defects in in vivo mucosal defenses that are induced when enteral feeding is not provided. It also focuses on previous observations that a specific immunocyte fuel, glutamine, and the enteric nervous system neuropeptide, bombesin, can act as surrogates for enteral feeding and exert beneficial effects upon the MALT in IV-TPN-fed animals by upregulating MAdCAM-1 and ICAM- 1 expression. The experiments are designed to confirm that IgA is a critical element of specific immunity and respiratory defenses against pneumonia with in vivo experiments. These experiments use a monoclonal antibody produced by a hybridoma cell line which is specific for polysaccharide antigen(s) found on a high percentage of clinical isolates of Pseudomonas aeruginosa.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SSS-W (40))
Program Officer
Somers, Scott D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Medicine
United States
Zip Code
Pierre, Joseph F; Busch, Rebecca A; Kudsk, Kenneth A (2016) The gastrointestinal immune system: Implications for the surgical patient. Curr Probl Surg 53:11-47
Collaud, Stéphane; Fadel, Elie; Schirren, Joachim et al. (2015) En Bloc Resection of Pulmonary Sulcus Non-small Cell Lung Cancer Invading the Spine: A Systematic Literature Review and Pooled Data Analysis. Ann Surg 262:184-8
Jonker, Mark A; Heneghan, Aaron F; Fechner, John H et al. (2015) Gut Lymphocyte Phenotype Changes After Parenteral Nutrition and Neuropeptide Administration. Ann Surg 262:194-201
Heneghan, Aaron F; Pierre, Joseph F; Gosain, Ankush et al. (2014) IL-25 improves luminal innate immunity and barrier function during parenteral nutrition. Ann Surg 259:394-400
Pierre, Joseph F; Heneghan, Aaron F; Meudt, Jennifer M et al. (2013) Parenteral nutrition increases susceptibility of ileum to invasion by E coli. J Surg Res 183:583-91
Heneghan, Aaron F; Pierre, Joseph F; Kudsk, Kenneth A (2013) IL-25 improves IgA levels during parenteral nutrition through the JAK-STAT pathway. Ann Surg 258:1065-71
Pierre, Joseph F; Heneghan, Aaron F; Feliciano, Rodrigo P et al. (2013) Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. JPEN J Parenter Enteral Nutr 37:401-9
Omata, Jiro; Pierre, Joseph F; Heneghan, Aaron F et al. (2013) Parenteral nutrition suppresses the bactericidal response of the small intestine. Surgery 153:17-24
Jonker, Mark A; Sauerhammer, Tina M; Faucher, Lee D et al. (2012) Bilateral versus unilateral bronchoalveolar lavage for the diagnosis of ventilator-associated pneumonia. Surg Infect (Larchmt) 13:391-5
Jonker, Mark A; Hermsen, Joshua L; Sano, Yoshifumi et al. (2012) Small intestine mucosal immune system response to injury and the impact of parenteral nutrition. Surgery 151:278-86

Showing the most recent 10 out of 61 publications