The normal development and function of the immune system is dependent, in part, on the proper assembly and expression of immunoglobulin (Ig) receptor and secreted proteins. Like all secretory pathway proteins, Ig molecules are synthesized, folded and assembled in the endoplasmic reticulum (ER), but unlike most heteromeric proteins, there is a developmental asymmetry in the expression of the subunits. The molecular chaperones of the ER play a critical role in controlling the folding of the individual subunits and ensuring that incompletely or improperly assembled Ig proteins do not leave this organelle. Therefore, elucidating the mechanisms by which Ig maturation in the ER is controlled is important to understanding how the proper development of the immune system is ensured. In the past, Ig heavy and light chains have also provided an excellent model system for identifying components of the ER quality control system and for understanding their function. During the last funding period, our studies revealed that Ig transport is controlled at the level of domain folding and that unlike other unfolded proteins, unassembled heavy chains do not appear to cycle on and off ER chaperones. To understand the cellular machinery that is responsible for this, experiments are proposed in the present application to 1) determine the role of GRP94 (a major ER chaperone of unknown function) in maintaining heavy chains in an unfolded state that is competent for assembly with light chains, 2) identify and characterize ER proteins that regulate the ATPase cycle of BiP, an ER chaperone, in order to understand why it remains stably bound to Ig heavy chains in the absence of light chain synthesis, and 3) isolate ER homologues of the DnaJ chaperone cofactor, which acts to aid and stabilize the binding of hsp70 chaperones to unfolded proteins to understand how BiP's binding to heavy chains is controlled. The data obtained from the experiments outlined in this proposal will increase our understanding of the ER quality control machinery that is so crucial to proper Ig biosynthesis and maturation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM054068-06
Application #
6386315
Study Section
Allergy and Immunology Study Section (ALY)
Program Officer
Marino, Pamela
Project Start
1996-04-01
Project End
2004-03-31
Budget Start
2001-04-01
Budget End
2002-03-31
Support Year
6
Fiscal Year
2001
Total Cost
$283,338
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Bai, B; Tan, H; Pagala, V R et al. (2017) Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry. Methods Enzymol 585:377-395
Behnke, Julia; Mann, Melissa J; Scruggs, Fei-Lin et al. (2016) Members of the Hsp70 Family Recognize Distinct Types of Sequences to Execute ER Quality Control. Mol Cell 63:739-52
Preissler, Steffen; Chambers, Joseph E; Crespillo-Casado, Ana et al. (2015) Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker. Elife 4:e08961
Ichhaporia, Viraj P; Sanford, Tyler; Howes, Jenny et al. (2015) Sil1, a nucleotide exchange factor for BiP, is not required for antibody assembly or secretion. Mol Biol Cell 26:420-9
Feige, Matthias J; Behnke, Julia; Mittag, Tanja et al. (2015) Dimerization-dependent folding underlies assembly control of the clonotypic ??T cell receptor chains. J Biol Chem 290:26821-31
Behnke, Julia; Feige, Matthias J; Hendershot, Linda M (2015) BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 427:1589-608
Otero, Joel H; Lizák, Beata; Feige, Matthias J et al. (2014) Dissection of structural and functional requirements that underlie the interaction of ERdj3 protein with substrates in the endoplasmic reticulum. J Biol Chem 289:27504-12
Feige, Matthias J; Gräwert, Melissa A; Marcinowski, Moritz et al. (2014) The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proc Natl Acad Sci U S A 111:8155-60
Behnke, Julia; Hendershot, Linda M (2014) The large Hsp70 Grp170 binds to unfolded protein substrates in vivo with a regulation distinct from conventional Hsp70s. J Biol Chem 289:2899-907
Feige, Matthias J; Hendershot, Linda M (2013) Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol Cell 51:297-309

Showing the most recent 10 out of 49 publications