): Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the essential 5' maturation of precursor tRNA (pre-tRNA). Both the protein and RNA subunits are essential for iii vivo activity; however, the bacterial RNA component catalyzes pre-tRNA cleavage iii vitro in high salt. Mechanistic and structural investigations of this enzyme are crucial as RNase P and the ribosome are the only ribozymes that function as true enzymes in vivo. In the previous grant period, we solved the first structure of the protein component of ribonuclease P and demonstrated that the protein enhances catalytic efficiency by binding the leader sequence of the precursor-tRNA substrate. This function places the protein component near the active site and for the first time demonstrates that the RNA and protein components both contribute to molecular recognition properties. We propose to continue investigating the structure-function properties of the Bacillus subtilis RNase P protein using a combination of biochemical (mutagenesis, crosslinking, kinetic analysis, isotope effects, modification interference, and spectroscopy) and x-ray crystallographic structural techniques. Specifically, we aim to: (1) explore the molecular recognition properties of the single-strand RNA binding cleft in the RNase P protein and to determine the position of this site relative to the P RNA; (2) delineate the P protein/P RNA binding surface and define the role of specific contacts in catalysis; (3) determine the position of catalytic metal sites and dissect the catalytic mechanism; and (4) extend the resolution of the RNase P protein structure, determine the structures of P protein-oligonucleotide complexes and site-specific variants of P protein, and solve the structure of native RNase P holoenzyme and holoenzyme-substrate complexes. Our long-term goal is to further our understanding of (1) the mechanisms of catalysis used by ribozymes as compared to protein enzymes, and (2) the structures and energetics of RNA binding proteins and protein/RNA complexes. RNase P is an ideal enzyme to compare catalytic strategies in protein and RNA enzymes since it functions in a biosynthetic pathway in vivo. Furthermore, the unique collaboration between the protein and RNA subunits may provide insight into the evolution from RNA to protein catalysts. Finally, RNase P has potential medical applications as both a novel antibiotic target, since it is an essential prokaryotic enzyme, and as a novel tool to specifically cleave mRNA species in vivo in gene therapy applications.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM055387-07
Application #
6490109
Study Section
Special Emphasis Panel (ZRG1-SSS-B (01))
Program Officer
Jones, Warren
Project Start
1997-01-01
Project End
2004-12-31
Budget Start
2002-01-01
Budget End
2002-12-31
Support Year
7
Fiscal Year
2002
Total Cost
$441,279
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Liu, Xin; Chen, Yu; Fierke, Carol A (2017) Inner-Sphere Coordination of Divalent Metal Ion with Nucleobase in Catalytic RNA. J Am Chem Soc 139:17457-17463
Klemm, Bradley P; Karasik, Agnes; Kaitany, Kipchumba J et al. (2017) Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P. RNA 23:1860-1873
Kim, Laura Y; Thompson, Peter M; Lee, Hyunna T et al. (2016) The Structural Basis of Actin Organization by Vinculin and Metavinculin. J Mol Biol 428:10-25
Klemm, Bradley P; Wu, Nancy; Chen, Yu et al. (2016) The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 6:
Howard, Michael J; Karasik, Agnes; Klemm, Bradley P et al. (2016) Differential substrate recognition by isozymes of plant protein-only Ribonuclease P. RNA 22:782-92
Karasik, Agnes; Shanmuganathan, Aranganathan; Howard, Michael J et al. (2016) Nuclear Protein-Only Ribonuclease P2 Structure and Biochemical Characterization Provide Insight into the Conserved Properties of tRNA 5' End Processing Enzymes. J Mol Biol 428:26-40
Bartke, Rebecca M; Cameron, Elizabeth L; Cristie-David, Ajitha S et al. (2015) Meeting report: SMART timing--principles of single molecule techniques course at the University of Michigan 2014. Biopolymers 103:296-302
Howard, Michael J; Klemm, Bradley P; Fierke, Carol A (2015) Mechanistic Studies Reveal Similar Catalytic Strategies for Phosphodiester Bond Hydrolysis by Protein-only and RNA-dependent Ribonuclease P. J Biol Chem 290:13454-64
Mustoe, Anthony M; Liu, Xin; Lin, Paul J et al. (2015) Noncanonical secondary structure stabilizes mitochondrial tRNA(Ser(UCN)) by reducing the entropic cost of tertiary folding. J Am Chem Soc 137:3592-9
Engelke, David R; Fierke, Carol A (2015) The evolution of RNase P. RNA 21:517-8

Showing the most recent 10 out of 29 publications