Delineating folding mechanisms has tremendous implications for human health and biological function. Folding errors in vivo may be responsible for the loss of more than 30% of synthesized polypeptides, while misfolded conformers have been implicated in a large number of human diseases, including cancer and amyloidoses. The loss of protein stability is the cause of 75% of the monogenic diseases. In addition, the ubiquitous presence of folding chaperones testifies to the importance of the folding process in many cellular activities. The wide range of biological processes and diseases centered around protein folding emphasizes the importance of mechanistic studies of this universal process. This current proposal will integrate experiment and simulations to address three outstanding questions concerning protein folding. Although there is a consensus that transition states (TSs) adopt a native-like topology, they have been described at times as polarized, expanded versions of the native state, either containing extensive amounts of secondary structure or formed in a general collapse around a diffuse nucleus. Does this diversity reflect reality? Or is it the consequence of inadequate methods to probe the TS, and a more coherent picture exists to describe TSs? Even more uncertainty surrounds the early steps leading up to the TS - is there is a collapse occurring via multiple, diverse routes represented by broad funnel, or is there a dominant ordered pathway with a sequential build-up of H-bonded structure, as we have proposed for ubiquitin? From the computational standpoint, can an algorithm that mimics the folding process predict pathways and, consequently, native structures without utilizing homology? In Aim 1, we will test our prediction that 70% of the native topology is present in the TS of many proteins and then investigate the origin of the 70% level. To do this, we will apply our ?-analysis method to characterize a selected set of naturally occurring and designed proteins.
In Aim 2, we will advance an algorithm that utilizes the folding process to predict pathways and structure without resorting to homology, and in the process test various folding models.
In Aim 3, we will rationally populate early and late intermediates and characterize them using NMR hydrogen exchange and relaxation dispersion methods. We will perform a """"""""protein autopsy"""""""" in which buried Leu?Glu- mutations drive a pH-dependent subglobal unfolding to populate late intermediates.

Public Health Relevance

Delineating folding mechanisms has tremendous implications for human health and biological function. The proposed research will identify the basic principles governing protein folding, including the nature of the early events leading to the rate-limiting step, and will use this information to predict pathways and structure without resorting to homology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM055694-14S1
Application #
7924336
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Wehrle, Janna P
Project Start
2009-09-30
Project End
2010-08-31
Budget Start
2009-09-30
Budget End
2010-08-31
Support Year
14
Fiscal Year
2009
Total Cost
$72,589
Indirect Cost
Name
University of Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Lian, Huada; Qin, Jian; Freed, Karl F (2018) Dielectric virial expansion of polarizable dipolar spheres. J Chem Phys 149:163332
Wang, Zongan; Jumper, John M; Wang, Sheng et al. (2018) A Membrane Burial Potential with H-Bonds and Applications to Curved Membranes and Fast Simulations. Biophys J 115:1872-1884
Riback, Joshua A; Bowman, Micayla A; Zmyslowski, Adam et al. (2018) Response to Comment on ""Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water"". Science 361:
Sachleben, Joseph R; Adhikari, Aashish N; Gawlak, Grzegorz et al. (2017) Aromatic claw: A new fold with high aromatic content that evades structural prediction. Protein Sci 26:208-217
Skinner, John J; Wang, Sheng; Lee, Jiyoung et al. (2017) Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome. Proc Natl Acad Sci U S A 114:13453-13458
French, Alexander R; Sosnick, Tobin R; Rock, Ronald S (2017) Investigations of human myosin VI targeting using optogenetically controlled cargo loading. Proc Natl Acad Sci U S A 114:E1607-E1616
Riback, Joshua A; Katanski, Christopher D; Kear-Scott, Jamie L et al. (2017) Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell 168:1028-1040.e19
Gates, Zachary P; Baxa, Michael C; Yu, Wookyung et al. (2017) Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core. Proc Natl Acad Sci U S A 114:2241-2246
Riback, Joshua A; Bowman, Micayla A; Zmyslowski, Adam M et al. (2017) Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358:238-241
Haddadian, Esmael J; Zhang, Hao; Freed, Karl F et al. (2017) Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles. Sci Rep 7:41671

Showing the most recent 10 out of 45 publications