Thousands of terpenes and terpenoid derivatives found throughout Nature are involved in diverse biosynthetic and metabolic pathways such as cholesterol biosynthesis in humans and paclitaxel (Taxol) synthesis in the Pacific yew. Notably, many terpenoids have been used as medicinal agents since times of antiquity due to their analgesic, antibiotic, and antifungal properties. In spite of the universal importance of this family of natural products for human health, it is remarkable that the three-dimensional structures of terpenoid cyclases have only been reported relatively recently. Terpenoid cyclases (a.k.a. synthases) catalyze the specific cyclization of a common allylic pyrophosphate substrate, such as farnesyl diphosphate, into one of hundreds of possible products. The terpenoid cyclase plays a critical role as a template in """"""""channeling"""""""" the precise substrate and intermediate conformations leading to the formation of one exclusive product. Thus, the terpenoid cyclases comprise an exciting class of biosynthetic enzymes from both the biological and the chemical perspectives. In the current funding period, we have determined the first X-ray crystal structure of a monoterpene cyclase, (+)- bornyl diphosphate synthase;we have determined the fifth crystal structure of a sesquiterpene cyclase, aristolochene synthase from A.terreus;and we have established the structural basis for aberrant product formation by site-specific variants of trichodiene synthase.
We aim to build upon this outstanding foundation in the next funding period by dissecting detailed structure-biosynthetic diversity relationships in trichodiene synthase. Specific!ally, we will study site-specific variants with altered metal binding properties, and we will also study variants engineered to generate alternative products. We will also study the structural basis for the evolution and fidelity of aristolochene synthase from A. terreus and P. roqueforti. In order to broaden our knowledge of structure-function relationships in the greater family of terpenoid cyclases, we will also study the diterpene cyclase taxadiene synthase. Finally, we will determine the X-ray crystal structure of sterol methyltransferase, a potential drug target for the treatment of fungal infections. Now that we have established a solid foundation in the study of biosynthetic enzymes that generate cyclic terpene products, we will now study an enzyme that utilizes a cyclic terpene substrate in a novel chemical reaction that further diversifies the biosynthetic array of cyclic terpene natural products.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM056838-12
Application #
7668514
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Smith, Ward
Project Start
1998-08-01
Project End
2010-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
12
Fiscal Year
2009
Total Cost
$281,249
Indirect Cost
Name
University of Pennsylvania
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Blank, Patrick N; Pemberton, Travis A; Chow, Jeng-Yeong et al. (2018) Crystal Structure of Cucumene Synthase, a Terpenoid Cyclase That Generates a Linear Triquinane Sesquiterpene. Biochemistry 57:6326-6335
Christianson, David W (2017) Structural and Chemical Biology of Terpenoid Cyclases. Chem Rev 117:11570-11648
Pemberton, Travis A; Chen, Mengbin; Harris, Golda G et al. (2017) Exploring the Influence of Domain Architecture on the Catalytic Function of Diterpene Synthases. Biochemistry 56:2010-2023
Blank, Patrick N; Barrow, Golda H; Chou, Wayne K W et al. (2017) Substitution of Aromatic Residues with Polar Residues in the Active Site Pocket of epi-Isozizaene Synthase Leads to the Generation of New Cyclic Sesquiterpenes. Biochemistry 56:5798-5811
Christianson, David W; Scrutton, Nigel S (2016) Editorial overview: Catalysis and regulation: enzyme structure, mechanism, and biosynthetic pathways. Curr Opin Struct Biol 41:viii-x
Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu et al. (2016) Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase. ACS Chem Biol 11:889-99
Chen, Mengbin; Harris, Golda G; Pemberton, Travis A et al. (2016) Multi-domain terpenoid cyclase architecture and prospects for proximity in bifunctional catalysis. Curr Opin Struct Biol 41:27-37
Pemberton, Travis A; Christianson, David W (2016) General base-general acid catalysis by terpenoid cyclases. J Antibiot (Tokyo) 69:486-93
Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah et al. (2016) Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase. Biochemistry 55:2864-74
Grundy, Daniel J; Chen, Mengbin; González, Verónica et al. (2016) Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture. Biochemistry 55:2112-21

Showing the most recent 10 out of 49 publications