The long-term objective of this proposal is to understand the molecular basis of flexibility of the ubiquitous cytoskeletal protein, spectrin, and its relatives, alpha-actinin and dystrophin. Continuing the previously successful strategy of determining the X-ray crystal structure of two connected repeating units of chicken brain alpha-spectrin, which led to the proposal of two of the first molecular models of spectrin flexibility, a follow-up investigation is proposed to critically test those models. The strengths of X-ray crystallography, fluorescence and nuclear magnetic resonance (NMR) spectroscopy will be exploited to address the following important questions about the models: 1) Is the conformation of a linker region coordinated with that of an adjacent linker region in a three repeat fragment? 2) Are linker regions predicted to be a random coil by secondary structure prediction methods nonhelical (which, if true, could suggest yet a third model of spectrin flexibility and also offer the possibility of studying mutations correlated with hereditary elliptocytosis)? 3) How does the absence of the nearly invariant tryptophan affect the conformation of the linker region and flexibility of two connected repeats? 4) Is conformational rearrangement of one of the previously determined structures-a key feature of one of the models--due to the phasing or to the sequence of the construct? To answer these crucial questions concerning models of spectrin flexibility, 3 structures will be determined by X-ray crystallography, 2 will be studied by fluorescence energy transfer and 10 will be analyzed by NMR. These three approaches will complement each other as the X-ray crystal structures will provide atomic distances for interpretation of energy transfer data and vector orientations for interpretation of NMR data, and energy transfer and NMR data will provide dynamic information about the crystal structures. The cloned spectrin fragments will also be characterized by their circular dichroism and fluorescence spectra, by their stabilities to urea and thermal denaturation and by their molecular weights on analytical ultracentrifugation. Proposed critical testing of molecular models of spectrin flexibility will contribute fundamental knowledge likely to advance understanding of conditions such as hereditary elliptocytosis and spherocytosis, muscular dystrophy, hydrops fetalis and Fanconi anemia, in all of which spectrin or spectrin-related proteins are abnormal or reduced in amount.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM057692-05S1
Application #
6747832
Study Section
Hematology Subcommittee 2 (HEM)
Program Officer
Flicker, Paula F
Project Start
1998-01-01
Project End
2005-06-30
Budget Start
2002-07-01
Budget End
2003-06-30
Support Year
5
Fiscal Year
2003
Total Cost
$2,563
Indirect Cost
Name
Northwestern University at Chicago
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
160079455
City
Evanston
State
IL
Country
United States
Zip Code
60201
Yasunaga, Mai; Ipsaro, Jonathan J; Mondragón, Alfonso (2012) Structurally similar but functionally diverse ZU5 domains in human erythrocyte ankyrin. J Mol Biol 417:336-50
Ipsaro, Jonathan J; Mondragon, Alfonso (2010) Structural basis for spectrin recognition by ankyrin. Blood 115:4093-101
Ipsaro, Jonathan J; Harper, Sandra L; Messick, Troy E et al. (2010) Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115:4843-52
Ipsaro, Jonathan J; Huang, Lei; Mondragón, Alfonso (2009) Structures of the spectrin-ankyrin interaction binding domains. Blood 113:5385-93
Ipsaro, Jonathan J; Huang, Lei; Gutierrez, Lucy et al. (2008) Molecular epitopes of the ankyrin-spectrin interaction. Biochemistry 47:7452-64
MacDonald, Ruby I; Cummings, Julie A (2004) Stabilities of folding of clustered, two-repeat fragments of spectrin reveal a potential hinge in the human erythroid spectrin tetramer. Proc Natl Acad Sci U S A 101:1502-7
Kusunoki, Hideki; Minasov, George; Macdonald, Ruby I et al. (2004) Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin. J Mol Biol 344:495-511
MacDonald, R I; Pozharski, E V (2001) Free energies of urea and of thermal unfolding show that two tandem repeats of spectrin are thermodynamically more stable than a single repeat. Biochemistry 40:3974-84
Grum, V L; Li, D; MacDonald, R I et al. (1999) Structures of two repeats of spectrin suggest models of flexibility. Cell 98:523-35