Controlling the cell division cycle is an essential part of normal animal development. In proliferating tissues, progression through the cell cycle assures that cell division accompanies growth. In contrast, terminal differentiation is typically preceded by cell cycle arrest and the cessation of proliferation. The decision to proliferate or remain quiescent is most often made during the G1 phase of the cell cycle. Somatic cells must correctly manage this decision in order to properly maintain homeostasis. Such management requires regulation of the cell cycle machinery controlling the G1-S transition. This includes gene amplification of positive cell cycle effectors such as cyclin D1, and mutation of negative effectors such as tumor suppressors pRB and p16. These molecules are part of a molecular pathway that controls the cell cycle in response to both positive and negative extracellular effectors of cell growth. A major target of regulation of these molecules is the ES2F/DP family of heterodimeric transcription factors. E2F/DP/1/s control the expression of genes require for growth and DNA replication. Recent results indicate that perturbations of E2F/DP function both in vitro and in vivo can also be oncogenic. E2F/DP and its known upstream regulators are all conserved in Drosophila melanogaster, where we can apply sophisticated genetic approaches to an analysis of E2F/DP function. In Drosophila, dE2F/dDP is required for normal development. Thus, developmental signals that control cell fate may regulate growth and cell cycle progress via altering E2F/DP activity. The goals of this proposal are 1) to genetically identify novel Drosophila genes that regulate the activity of dE2F/dDP and therefore may regulate the G1-S transitions of the cell-cycle, and 2) to understand how dE2F/dDP regulates transcription in vivo and how this affects cell cycle control during development.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM057859-01A1
Application #
2744639
Study Section
Human Embryology and Development Subcommittee 1 (HED)
Project Start
1999-01-01
Project End
2003-12-31
Budget Start
1999-01-01
Budget End
1999-12-31
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Genetics
Type
Schools of Medicine
DUNS #
078861598
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Meserve, Joy H; Duronio, Robert J (2018) Fate mapping during regeneration: Cells that undergo compensatory proliferation in damaged Drosophila eye imaginal discs differentiate into multiple retinal accessory cell types. Dev Biol 444:43-49
Meserve, Joy H; Duronio, Robert J (2017) A population of G2-arrested cells are selected as sensory organ precursors for the interommatidial bristles of the Drosophila eye. Dev Biol 430:374-384
Swanson, Christina I; Meserve, Joy H; McCarter, Patrick C et al. (2015) Expression of an S phase-stabilized version of the CDK inhibitor Dacapo can alter endoreplication. Development 142:4288-98
Meserve, Joy H; Duronio, Robert J (2015) Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 142:2740-51
McKay, Daniel J; Klusza, Stephen; Penke, Taylor J R et al. (2015) Interrogating the function of metazoan histones using engineered gene clusters. Dev Cell 32:373-86
Salzler, Harmony R; Tatomer, Deirdre C; Malek, Pamela Y et al. (2013) A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs. Dev Cell 24:623-34
Fox, Donald T; Duronio, Robert J (2013) Endoreplication and polyploidy: insights into development and disease. Development 140:3-12
Meserve, Joy H; Duronio, Robert J (2012) Atypical E2Fs drive atypical cell cycles. Nat Cell Biol 14:1124-5
Duronio, Robert J (2012) Developing S-phase control. Genes Dev 26:746-50
Sloan, Roketa S; Swanson, Christina I; Gavilano, Lily et al. (2012) Characterization of null and hypomorphic alleles of the Drosophila l(2)dtl/cdt2 gene: Larval lethality and male fertility. Fly (Austin) 6:173-83

Showing the most recent 10 out of 33 publications