Transport of macromolecules between the nucleus and the cytoplasm is an essential cellular process in all eukaryotes. The maintenance and decoding of the eukaryotic genome, and the dynamic state of the eukaryotic transcriptome and proteome relies on the compartmentalization and exchange of a large number of proteins and RNAs across the nuclear envelope. Furthermore, it is well documented that the regulation of nucleocytoplasmic transport provides an important mechanism by which signal transduction pathways and developmental stimuli control differential gene expression in eukaryotes. In addition, many viruses target components of the cellular nuclear transport machinery, and exploit or modify them to promote viral propagation. Therefore, a better understanding of the molecular machinery that mediates nucleocytoplasmic transport is essential both for understanding fundamental cellular processes and the development of novel anti-viral therapies. Despite the critical importance of messenger RNA (mRNA) export for eukaryotic gene expression, many aspects of the packaging, processing, and transport of mRNA-containing ribonucleoprotein particles (RNPs) from the nucleus have not yet been elucidated. The long-term objective of the research program described in this proposal is to understand the molecular pathway by which mRNAs are targeted to and translocated across the nuclear envelope. Export of mRNA appears to be mediated by multiple soluble protein factors that specifically bind to mRNA in the nucleus but release their cargo in the cytoplasm upon translocation through the nuclear pore complex. This spatial regulation of cargo binding and release is important for the transport of mRNAs but remains poorly understood at the mechanistic level. Moreover, evidence obtained in our laboratory and others indicates an important role for soluble, inositol polyphosphates in mRNA export, but the target(s) of these effectors have not been identified. Thus, we specifically propose: (1) to characterize the role of the major poly (A)-binding protein Pabl in mRNA maturation and export; (2) to identify the function and the targets of soluble inositol polyphosphates in mRNA export; and, (3) to trap, isolate, and characterize intermediates of the mRNA export pathway and to determine how mRNA export complexes are disassembled in the cytoplasm. The proposed experiments take advantage of the proteomic and genomic tools available in the yeast Saccharomyces cerevisiae and employ a combination of innovative biochemical, genetic and cell biological approaches to address these three specific aims. Because mRNA transport is a highly conserved process, the mechanistic insights obtained from these studies will be directly relevant to all eukaryotes, including humans. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM058065-07A2
Application #
6870476
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Shapiro, Bert I
Project Start
1998-09-30
Project End
2008-08-31
Budget Start
2004-09-30
Budget End
2005-08-31
Support Year
7
Fiscal Year
2004
Total Cost
$280,023
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Heinrich, Stephanie; Derrer, Carina Patrizia; Lari, Azra et al. (2017) Temporal and spatial regulation of mRNA export: Single particle RNA-imaging provides new tools and insights. Bioessays 39:
Onischenko, Evgeny; Tang, Jeffrey H; Andersen, Kasper R et al. (2017) Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex. Cell 171:904-917.e19
Joyner, Ryan P; Tang, Jeffrey H; Helenius, Jonne et al. (2016) A glucose-starvation response regulates the diffusion of macromolecules. Elife 5:
Dultz, Elisa; Tjong, Harianto; Weider, Elodie et al. (2016) Global reorganization of budding yeast chromosome conformation in different physiological conditions. J Cell Biol 212:321-34
Mugler, Christopher Frederick; Hondele, Maria; Heinrich, Stephanie et al. (2016) ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. Elife 5:
Smith, Carlas; Lari, Azra; Derrer, Carina Patrizia et al. (2015) In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. J Cell Biol 211:1121-30
Backlund, Mikael P; Joyner, Ryan; Moerner, W E (2015) Chromosomal locus tracking with proper accounting of static and dynamic errors. Phys Rev E Stat Nonlin Soft Matter Phys 91:062716
Lowe, Alan R; Tang, Jeffrey H; Yassif, Jaime et al. (2015) Importin-? modulates the permeability of the nuclear pore complex in a Ran-dependent manner. Elife 4:
Wilson, Katherine L; Weis, Karsten (2015) Editorial overview: Cell nucleus: Nuclear structure and organization—open frontiers in cell and genome biology. Curr Opin Cell Biol 34:v-vi
Azimi, Mohammad; Bulat, Evgeny; Weis, Karsten et al. (2014) An agent-based model for mRNA export through the nuclear pore complex. Mol Biol Cell 25:3643-53

Showing the most recent 10 out of 37 publications