STRUCTURE AND FUNCTION OF THE NUCLEAR PORE COMPLEX Of central importance to the intracellular organization of all eukaryotes is the accurate transport of macromolecules between the nucleus and the cytoplasm, which is achieved through the function of the nuclear pore complex (NPC). The NPC is an enormous transport channel that perforates the double membrane of the nuclear envelope. However, how NPCs form and how they are inserted into the nuclear membrane is not known. NPCs play an essential role in many diverse transport events including the export of messenger RNAs from the nucleus to the cytoplasm. But despite its fundamental significance, the pathway by which messenger RNAs directionally translocate through the NPC remains poorly defined. The goals of this research proposal are to elucidate the mechanism by which NPCs form and assemble in the nuclear envelope and to characterize the role of the NPC in messenger RNA export. All experimental approaches described in this proposal take advantage of the proteomic, genomic and cell biological tools available for use within the single cellular eukaryote Saccharomyces cerevisiae. Yeast provides an excellent model system to characterize the components and function of the NPC, to study the complex NPC assembly process in living cells, and to develop novel reconstitution assays.
Our aims are: (1) To characterize the role of the NPC components Gle1 and Dbp5 in mRNA export and to investigate how mRNAs are unidirectionally transported across the NPC. (2) To study the role of the transmembrane nuclear pore protein Ndc1 in NPC assembly and structure. (3) To use fluorescence based assays to examine NPC biosynthesis in living cells and to reconstitute NPC assembly steps in vitro using defined components. We employ a combination of innovative biochemical, genetic and cell biological approaches to address these three specific aims in S. cerevisiae. Because the NPC is a highly conserved structure, the mechanistic insights obtained from these studies will be directly relevant to all eukaryotes, including humans.

Public Health Relevance

In all eukaryotes, regulation of macromolecular transport through the nuclear pore complex provides an essential mechanism by which signal transduction pathways and developmental stimuli control differential gene expression. In addition, many viruses target components of the cellular nuclear transport machinery to facilitate viral propagation and several oncogenic translocations involve components of the nuclear pore complex to promote cancer development. Therefore, a better understanding of the molecular machinery that mediates nucleocytoplasmic transport is essential both for understanding fundamental cellular processes and the development of novel anti-viral and anti-cancer therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM058065-13
Application #
8038335
Study Section
Nuclear Dynamics and Transport (NDT)
Program Officer
Ainsztein, Alexandra M
Project Start
1998-09-30
Project End
2013-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
13
Fiscal Year
2011
Total Cost
$372,453
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Heinrich, Stephanie; Derrer, Carina Patrizia; Lari, Azra et al. (2017) Temporal and spatial regulation of mRNA export: Single particle RNA-imaging provides new tools and insights. Bioessays 39:
Onischenko, Evgeny; Tang, Jeffrey H; Andersen, Kasper R et al. (2017) Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex. Cell 171:904-917.e19
Dultz, Elisa; Tjong, Harianto; Weider, Elodie et al. (2016) Global reorganization of budding yeast chromosome conformation in different physiological conditions. J Cell Biol 212:321-34
Mugler, Christopher Frederick; Hondele, Maria; Heinrich, Stephanie et al. (2016) ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. Elife 5:
Joyner, Ryan P; Tang, Jeffrey H; Helenius, Jonne et al. (2016) A glucose-starvation response regulates the diffusion of macromolecules. Elife 5:
Smith, Carlas; Lari, Azra; Derrer, Carina Patrizia et al. (2015) In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. J Cell Biol 211:1121-30
Backlund, Mikael P; Joyner, Ryan; Moerner, W E (2015) Chromosomal locus tracking with proper accounting of static and dynamic errors. Phys Rev E Stat Nonlin Soft Matter Phys 91:062716
Lowe, Alan R; Tang, Jeffrey H; Yassif, Jaime et al. (2015) Importin-? modulates the permeability of the nuclear pore complex in a Ran-dependent manner. Elife 4:
Wilson, Katherine L; Weis, Karsten (2015) Editorial overview: Cell nucleus: Nuclear structure and organization—open frontiers in cell and genome biology. Curr Opin Cell Biol 34:v-vi
Azimi, Mohammad; Bulat, Evgeny; Weis, Karsten et al. (2014) An agent-based model for mRNA export through the nuclear pore complex. Mol Biol Cell 25:3643-53

Showing the most recent 10 out of 37 publications