The regulation of gene expression is a fundamental process in cells, and alterations in this process have been linked to numerous disease states in humans. It is regulated at multiple levels, requiring highly coordinated and integrated events including chromatin remodeling, initiation, elongation, processing and ultimately the destruction of mRNA. Determining how these events are coordinated is central to understanding gene expression. The overall objective of this proposal is to understand how transcription factor complexes coordinate multiple steps in gene regulation. This proposal will examine the functions of the Ccr4-Not complex, exploiting the powerful genetic system of yeast. The Ccr4-Not complex has many ties to the general transcription factor complex TFIID, particularly the TAFII subunits. Genetic, biochemical and molecular approaches are proposed.
Aim 1 will characterize the functions of the Ccr4- Not transcription complex in the process of transcription. This complex displays multiple physical and genetic links to TFIID, the general transcription machinery and elongation factors. Its role in multiple stages in the transcription cycle will be examined using RNR3 as a model gene.
Aim 2 will identify the targeting mechanism for Ccr4-Not. It regulates a subset of genes, and appears not be universally required for all transcription in the cell. We will explore the DNA sequence and transcription factor requirements for its recruitment and function at RNR3.
Aim 3 will employ genomics based approaches to identify novel Ccr4-Not dependent genes and identify the features of the genome that specifies regulation by this complex. The intersection of these approaches will allow for a greater understanding of the coordination of multiple steps in transcription. The completion of these aims will: (1) uncover how multiple steps in gene expression are coordinated and regulated;(2) define the functions of a highly conserved eukaryotic transcription factor complex implicated in human disease;(3) lay the groundwork for identifying how specific mRNAs are marked for post-transcriptional control. Project Narrative - Relevance: Cells require precise control over the expression of their genes, and numerous human diseases and syndromes are caused by disturbances in gene expression. A multitude of transcription factors coordinate their activities to regulate this important process. The goal of the work described here is to understand how transcription factors control the level of gene expression;thus, completion of this work is directly relevant to human health.
Showing the most recent 10 out of 32 publications