Control of gene expression at the start of the eukaryotic cell division cycle is the initiating event for cell proliferation in most cell types. Mutations deregulating that crucial transcriptional switch lead to uncontrolled cell growth and division. In humans, defects in that regulatory pathway are associated with development disorders and cancer. We propose to study the analogous transcriptional regulatory network in the budding yeast in the interest of understanding the nature of that regulation. Greater than 300 genes are coordinately expressed during late G1 phase in preparation for entry into a new cell cycle. Those genes are under the control of two related transcription factors, SBF and MBF, functional analogs of the E2F gene family in humans. Those factors act coordinately to promote expression and are repressed as cells progress into S phase. However, SBF and MBF are regulated by distinct transcriptional repressors that govern both activation and repression. As a consequence, the two factors are subject to differential regulation by cellular and environmental signals. We propose to study the differences and similarities between the mechanisms governing gene expression controlled by SBF and MBF in the context of three Specific Aims. In the first Aim we will elucidate the specific regulatory factors governing the activation of MBF target genes, the more poorly understood of the two transcription factors. In the second Aim we will establish the mechanism of repression of MBF targets as cells exit G1 phase. Because transcriptional repression is central to the regulation of this gene network, we propose to apply high-resolution genome wide location analysis to study the influence of transcriptional repressors on histone modifying enzymes and their marks on nucleosomes. Finally, in the third Aim we will study the molecular basis for the differential regulation of SBF and MBF by their transcriptional repressors, Whi5 and Nrm1, respectively and establish the mechanism by which MBF evades one mechanism of transcriptional repression when the DNA replication checkpoint is induced by genotoxic stress. The comparative analysis of these two transcription factors acting on more than 200 genes will lead to a new understanding, not only of the mechanisms of transcriptional repression at cell cycle regulated genes, but also on the general role of transcriptional repression in eukaryotes.

Public Health Relevance

This proposal outlines a plan to understand the transcriptional regulation of a large gene family that controls cell proliferation in yeast. This work has direct applications in understanding control of gene expression in eukaryotes. Mutations affecting the analogous regulatory network in humans are associated with developmental defects and cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
4R01GM059441-16
Application #
9039484
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Melillo, Amanda A
Project Start
2000-01-01
Project End
2017-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
16
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Haase, Steven B; Wittenberg, Curt (2014) Topology and control of the cell-cycle-regulated transcriptional circuitry. Genetics 196:65-90
Ma, Hui; Han, Bong-Kwan; Guaderrama, Marisela et al. (2014) Psy2 targets the PP4 family phosphatase Pph3 to dephosphorylate Mth1 and repress glucose transporter gene expression. Mol Cell Biol 34:452-63
Travesa, Anna; Kalashnikova, Tatyana I; de Bruin, Robertus A M et al. (2013) Repression of G1/S transcription is mediated via interaction of the GTB motifs of Nrm1 and Whi5 with Swi6. Mol Cell Biol 33:1476-86
Bertoli, Cosetta; Klier, Steffi; McGowan, Clare et al. (2013) Chk1 inhibits E2F6 repressor function in response to replication stress to maintain cell-cycle transcription. Curr Biol 23:1629-37
Travesa, Anna; Wittenberg, Curt (2012) Turned on by genotoxic stress. Cell Cycle 11:3145-6
Travesa, Anna; Kuo, Dwight; de Bruin, Robertus A M et al. (2012) DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1. EMBO J 31:1811-22
Spielewoy, Nathalie; Guaderrama, Marisela; Wohlschlegel, James A et al. (2010) Npr2, yeast homolog of the human tumor suppressor NPRL2, is a target of Grr1 required for adaptation to growth on diverse nitrogen sources. Eukaryot Cell 9:592-601
de Bruin, Robertus A M; Kalashnikova, Tatyana I; Wittenberg, Curt (2008) Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit. Mol Cell Biol 28:6919-28
de Bruin, R A M; Kalashnikova, T I; Aslanian, A et al. (2008) DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1. Proc Natl Acad Sci U S A 105:11230-5
Ashe, Mabelle; de Bruin, Robertus A M; Kalashnikova, Tatyana et al. (2008) The SBF- and MBF-associated protein Msa1 is required for proper timing of G1-specific transcription in Saccharomyces cerevisiae. J Biol Chem 283:6040-9

Showing the most recent 10 out of 16 publications