The actin cytoskeleton plays an essential role in basic cellular processes including locomotion, membrane transport, and cytokinesis. These processes are important for normal embryonic development, immune system function and tissue repair, and also contribute to illnesses such cardiovascular disease, cancer metastasis, and microbial infection. To enable actin function, cells precisely control the nucleation of actin polymerization and the organization of the resulting filaments. The goal of our work is to understand the function and regulation of one of the cell's key actin nucleating and organizing factors, the Arp2/3 complex. This protein complex polymerizes actin filaments into Y-branched networks that participate in lamellipodia protrusion, phagocytosis, endocytosis and membrane transport. Activation of the Arp2/3 complex requires proteins called nucleation promoting factors (NPFs), of which there are several in human cells, each acting to direct the Arp2/3 complex to participate in a particular cellular process. NPFs are themselves regulated by other cytoskeletal proteins and signal transduction molecules that coordinate their activities in space and time. However, despite the central importance of the Arp2/3 complex and its NPFs, we have yet to answer key questions about their function and regulation in vitro and in cells. For example, how is the Arp2/3 complex activated by NPFs and other interacting factors, and what role do these interactions play in the cell? Apart from a well-established role in cell migration, how do Arp2/3 complex and NPFs function in other processes such as membrane trafficking? Finally, what is the complete set of NPFs in humans, and how does each adapt the function of the Arp2/3 complex to a distinct role in the cell? To answer these questions, we propose the following specific aims. (1) We will determine how the biochemical activities of the Arp2/3 complex contribute to its cellular functions by examining the effect of Arp2/3 complex mutants on the dynamics of Y- branched actin networks in vitro and in cellular lamellipodia. (2) We will examine the function and regulation of an NPF called WHAMM, which acts in membrane transport between the ER and Golgi, by examining its mechanistic role in transport, its regulation by interacting proteins, and its ability to promote membrane dynamics in a system of purified proteins. (3) We will define the cellular function and regulation of two newly discovered NPFs called JMY and WASH by examining their localization, identifying interacting proteins and determining the cellular phenotypes caused by silencing their expression. In the long term, these experiments will help elucidate how actin nucleation and organization is controlled in cells during processes such as cell locomotion, membrane transport, and cell division. Understanding these mechanisms may ultimately lead to new approaches to diagnose and treat disease.

Public Health Relevance

The proposed work seeks to answer important outstanding questions about the function and regulation of the actin cytoskeleton, a cellular system that plays a critical role in a variety of processes including cell migration, cell division, and intracellular membrane transport. The actin cytoskeleton also plays an important role in pathogenesis, for example in inflammation, cardiovascular disease, cancer metastasis, and bacterial and viral infection. Therefore, understanding the mechanisms that regulate the functions of the actin cytoskeleton may lead to new approaches for diagnosing and treating a variety of diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM059609-13S1
Application #
8735022
Study Section
Cell Structure and Function (CSF)
Program Officer
Gindhart, Joseph G
Project Start
1999-09-01
Project End
2014-08-31
Budget Start
2013-09-30
Budget End
2014-08-31
Support Year
13
Fiscal Year
2013
Total Cost
$110,523
Indirect Cost
$37,015
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Ohkawa, Taro; Welch, Matthew D (2018) Baculovirus Actin-Based Motility Drives Nuclear Envelope Disruption and Nuclear Egress. Curr Biol 28:2153-2159.e4
Hepp, Susan E; Borgo, Gina M; Ticau, Simina et al. (2018) Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial for Nuclear Actin Polymerization and Nucleocapsid Morphogenesis. J Virol 92:
Lamason, Rebecca L; Welch, Matthew D (2017) Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 35:48-57
Russo, Ashley J; Mathiowetz, Alyssa J; Hong, Steven et al. (2016) Rab1 recruits WHAMM during membrane remodeling but limits actin nucleation. Mol Biol Cell 27:967-78
Welch, Matthew D (2015) Cell migration, freshly squeezed. Cell 160:581-582
Welch, Matthew D (2015) Why should cell biologists study microbial pathogens? Mol Biol Cell 26:4295-301
Benanti, Erin L; Nguyen, Catherine M; Welch, Matthew D (2015) Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 161:348-60
Welch, Matthew D; Way, Michael (2013) Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14:242-55
Duleh, Steve N; Welch, Matthew D (2012) Regulation of integrin trafficking, cell adhesion, and cell migration by WASH and the Arp2/3 complex. Cytoskeleton (Hoboken) 69:1047-58
Gandhi, Kamal M; Ohkawa, Taro; Welch, Matthew D et al. (2012) Nuclear localization of actin requires AC102 in Autographa californica multiple nucleopolyhedrovirus-infected cells. J Gen Virol 93:1795-803

Showing the most recent 10 out of 37 publications