Long Interspersed Element-1 (LINE-1 or L1) is an abundant mobile genetic element that comprises approximately 17% of human DNA. Active human L1s are about 6 kb in length and they encode two proteins (ORF1p and ORF2p) that are critical for retrotransposition. Ongoing LINE-1 retrotransposition events contribute to inter-individual genetic variation, and, on occasion, LINE-1 insertions into genes can result in genetic disease. During the past decade, my laboratory has developed efficient assays to monitor LINE-1 retrotransposition in cultured mammalian cells. Here, we will use these assays in conjunction with genetic, molecular, and biochemical approaches to further elucidate the mechanism of L1 retrotransposition. We also will identify host proteins that affect LINE-1 retrotransposition in human cells. A basic mechanistic understanding of the process of L1 retrotransposition will lead to greater insight about how transposable element activity contributes to human disease, human genome evolution, and human diversity.

Public Health Relevance

Long INterspersed Element-1 (LINE-1) is an abundant mobile genetic element that comprises 17% of human DNA. Active LINE-1 elements are able to retrotranspose or """"""""jump,"""""""" inserting themselves into a new genomic location by a copy and paste mechanism. On occasion, new LINE-1 insertions in the germ line, in early development, or in somatic cells can result in disease-producing mutations. Despite the mutagenic potential of LINE-1 elements, little is known about the molecular mechanism of LINE-1 retrotransposition and even less is known about cellular proteins that influence this process. During the past decade, my laboratory has developed a toolbox to study LINE- 1 retrotransposition in a controlled manner in mammalian cultured cells. These tools have allowed significant progress in this field by my lab and others. In this proposal, we will use genetic, molecular biological, and biochemical approaches to further elucidate the molecular mechanism of LINE-1 retrotransposition. We also will explore how mutations in host proteins involved in host defense and/or DNA repair pathways affect LINE-1 jumping. Through these studies, we will learn more about how this intriguing family of repetitive DNA sequences contributes to the structure and function of the human genome.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM060518-13
Application #
8309244
Study Section
Genetic Variation and Evolution Study Section (GVE)
Program Officer
Janes, Daniel E
Project Start
1999-09-30
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
13
Fiscal Year
2012
Total Cost
$296,431
Indirect Cost
$100,411
Name
University of Michigan Ann Arbor
Department
Genetics
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Kopera, Huira C; Flasch, Diane A; Nakamura, Mitsuhiro et al. (2016) LEAP: L1 Element Amplification Protocol. Methods Mol Biol 1400:339-55
Kopera, Huira C; Larson, Peter A; Moldovan, John B et al. (2016) LINE-1 Cultured Cell Retrotransposition Assay. Methods Mol Biol 1400:139-56
Wylie, Annika; Jones, Amanda E; D'Brot, Alejandro et al. (2016) p53 genes function to restrain mobile elements. Genes Dev 30:64-77
Moldovan, John B; Moran, John V (2015) The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet 11:e1005121
Richardson, Sandra R; Doucet, Aurélien J; Kopera, Huira C et al. (2015) The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol Spectr 3:MDNA3-0061-2014
Doucet, Aurélien J; Wilusz, Jeremy E; Miyoshi, Tomoichiro et al. (2015) A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition. Mol Cell 60:728-741
Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A et al. (2014) APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. Elife 3:e02008
Zhang, Ao; Dong, Beihua; Doucet, Aurélien J et al. (2014) RNase L restricts the mobility of engineered retrotransposons in cultured human cells. Nucleic Acids Res 42:3803-20
Singh, Parmit Kumar; Bourque, Guillaume; Craig, Nancy L et al. (2014) Mobile genetic elements and genome evolution 2014. Mob DNA 5:26
Macfarlane, Catriona M; Collier, Pamela; Rahbari, Raheleh et al. (2013) Transduction-specific ATLAS reveals a cohort of highly active L1 retrotransposons in human populations. Hum Mutat 34:974-85

Showing the most recent 10 out of 46 publications