The overall objective of this competing R01 application is to discover new peptide motifs that seamlessly encode both lower critical solution temperature (LCST) phase behavior and bioactivity, and to use these new sequences to create the """"""""next-generation"""""""" of LCST polymers with intrinsic biological activity and self- assembled structures with morphological diversity and enhanced stability. The central hypothesis of this proposal is that -contrary to the existing paradigm that only elastin-like polypeptides (ELPs) composed of the canonical VPGXG motif or its close relatives exhibit LCST behavior- there is a vast sequence space of undiscovered amino acid motifs that also display LCST phase behavior upon polymerization. In preliminary studies leading to this proposal, we identified a large and diverse set of peptide motifs that exhibit LCST behavior that depart significantly from the canonical VPGXG motif derived from elastin. We have also identified sequences that simultaneously encode LCST phase behavior and bioactivity, as well as motifs that display different degrees of thermal hysteresis in their soluble-insoluble phase behavior. We plan to build upon these findings by pursuing three inter-related specific aims.
In Specific Aim 1, we will synthesize a large set (~65) of different peptide polymers based on the PXnG (n=0 to 4) repeat unit and characterize their LCST phase behavior and their thermal hysteresis.
In Specific Aim 2, peptide polymers that display different degrees of thermal hysteresis in their LCST phase behavior will be used to synthesize diblock and triblock copolymers composed of hydrophilic ELP blocks and """"""""next-generation"""""""" hydrophobic polypeptide blocks with different degrees of hysteresis in their LCST phase behaviors. These block copolymers will yield morphologically diverse nanoscale self-assembled structures that display different levels of """"""""kinetic"""""""" stability that is controlled by the hysteresis in the LCST phase behavior of the hydrophobic block. Finally, in Specific Aim 3, from the design rules uncovered in Specific Aim 1 on the sequence level determinants of LCST phase behavior, we will test the hypothesis that bioactive peptides (5-50 amino acids in length) with a partially disordered secondary structure can be reprogrammed into unstructured polymers that display LCST phase transition behavior, while retaining their bioactivity.
This Specific Aim will yield -for the first time- peptide polymers wherein the repeat units of the polymers are intrinsically bioactive;by doing so, we will take a major step toward merging the intrinsic biological function of peptides with the useful materials properties of polymers. The significance of this proposal is that it will yield, for the first time, a diverse family of new peptide polymers that display rich LCST phase behavior. The impact of this proposal will be the development of self-assembled structures with tunable stability, as well as the first demonstration that peptide drugs can be converted into stimulus responsive polymers.

Public Health Relevance

The proposed research will discover new peptide sequences (pearls) that when put on a necklace (peptide polymer) go from being soluble to insoluble in water as the temperature is raised. These new sequences will teach us the rules to take peptides that have beneficial biological activity and convert them into polymers that show the same temperature dependent solubility behavior so that we will, for the first time, be able to convert peptide drugs into polymers, thus taking advantage of the many useful properties polymers offer for the delivery of drugs in the human body.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Smith, Ward
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Biomedical Engineering
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Roberts, Stefan; Harmon, Tyler S; Schaal, Jeffrey L et al. (2018) Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat Mater 17:1154-1163
Gilroy, Caslin A; Roberts, Stefan; Chilkoti, Ashutosh (2018) Fusion of fibroblast growth factor 21 to a thermally responsive biopolymer forms an injectable depot with sustained anti-diabetic action. J Control Release 277:154-164
Roberts, Stefan; Harmon, Tyler S; Schaal, Jeffrey L et al. (2018) Author Correction: Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat Mater 17:1164
Costa, Simone A; Simon, Joseph R; Amiram, Miriam et al. (2018) Photo-Crosslinkable Unnatural Amino Acids Enable Facile Synthesis of Thermoresponsive Nano- to Microgels of Intrinsically Disordered Polypeptides. Adv Mater 30:
Li, Linying; Li, Nan K; Tu, Qing et al. (2018) Functional Modification of Silica through Enhanced Adsorption of Elastin-Like Polypeptide Block Copolymers. Biomacromolecules 19:298-306
Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh (2018) Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins. Biochemistry 57:2405-2414
Gonzalez, Mark A; Simon, Joseph R; Ghoorchian, Ali et al. (2017) Strong, Tough, Stretchable, and Self-Adhesive Hydrogels from Intrinsically Unstructured Proteins. Adv Mater 29:
Luginbuhl, Kelli M; Mozhdehi, Davoud; Dzuricky, Michael et al. (2017) Recombinant Synthesis of Hybrid Lipid-Peptide Polymer Fusions that Self-Assemble and Encapsulate Hydrophobic Drugs. Angew Chem Int Ed Engl 56:13979-13984
Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo et al. (2017) Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides. Biomacromolecules 18:2419-2426
Simon, Joseph R; Carroll, Nick J; Rubinstein, Michael et al. (2017) Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat Chem 9:509-515

Showing the most recent 10 out of 62 publications