On the basis of our studies to date using the experimental model of sepsis induced by cecal ligation/puncture (CLP) in rats, serious impairment of innate immunity develops. This results in what appears to be a C5a-dependent defect in assembly of NADPH oxidase and defective phagocytic function of neutrophils. These defects can be reproduced by in vitro exposure of neutrophils to concentrations of C5a found in sepsis. In the first aim, we will evaluate how in vitro exposure of neutrophils to C5a results in detective signaling pathways: phorbol 12-myristate 13-acetate (PMA)-induced activation of phosphokinase C (PKC) which results in assembly of NADPH oxidase; and cell activation by engagement of FcyRs resulting in phagocytic responses. In the second aim, we will evaluate the same signaling pathways in blood neutrophils from CLP animals and determine if treatment with anti-C5a prevents defective signaling. In the third aim, we will determine if treatment of normal rats and mice and CLP rats and mice with anti-C5a compromises innate immunity, as assessed by bacterial clearance (Pseudomonas sp. and Klebsiella sp.) from lungs and evaluate the effects on survival. In the fourth aim, we will employ microarray analysis in CLP rats to define, as a function of time, alterations in global gene expression in organs that are predisposed to injury during sepsis (liver, lungs, kidneys, thymus) and determine if treatment with anti-C5a prevents this pattern of gene expression. It is possible that microarrary analysis will be predictive of organ susceptibility to damage during sepsis. Collectively, these studies should provide important evidence related to the mechanisms by which complement activation during sepsis impairs innate immunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM061656-01A2
Application #
6423637
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Somers, Scott D
Project Start
2002-08-15
Project End
2006-05-31
Budget Start
2002-08-15
Budget End
2003-05-31
Support Year
1
Fiscal Year
2002
Total Cost
$283,864
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Pathology
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Fattahi, Fatemeh; Russell, Mark W; Malan, Elizabeth A et al. (2018) Harmful Roles of TLR3 and TLR9 in Cardiac Dysfunction Developing during Polymicrobial Sepsis. Biomed Res Int 2018:4302726
Fattahi, Fatemeh; Frydrych, Lynn M; Bian, Guowu et al. (2018) Role of complement C5a and histones in septic cardiomyopathy. Mol Immunol 102:32-41
Fattahi, Fatemeh; Ward, Peter A (2017) Complement and sepsis-induced heart dysfunction. Mol Immunol 84:57-64
Fattahi, Fatemeh; Kalbitz, Miriam; Malan, Elizabeth A et al. (2017) Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. FASEB J 31:4129-4139
Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope et al. (2017) Selective Biological Responses of Phagocytes and Lungs to Purified Histones. J Innate Immun 9:300-317
Kalbitz, Miriam; Fattahi, Fatemeh; Herron, Todd J et al. (2016) Complement Destabilizes Cardiomyocyte Function In Vivo after Polymicrobial Sepsis and In Vitro. J Immunol 197:2353-61
Fattahi, Fatemeh; Ward, Peter A (2016) Anti-inflammatory interventions-what has worked, not worked, and what may work in the future. Transl Res 167:1-6
Delano, Matthew J; Ward, Peter A (2016) The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev 274:330-353
Standiford, Theodore J; Ward, Peter A (2016) Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res 167:183-91
Kalbitz, Miriam; Fattahi, Fatemeh; Grailer, Jamison J et al. (2016) Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB J 30:3997-4006

Showing the most recent 10 out of 107 publications