Mammalian soluble adenylyl cyclase (sAC) is structurally, biochemically, and physiologically distinct from G protein coupled transmembrane adenylyl cyclases. sAC activity is not regulated by the known modulators of transmembrane adenylyl cyclases activity, such as G proteins and forskolin, but it is directly stimulated by the bicarbonate- ion. Multiple physiological processes (i.e., breathing, blood flow, cerebrospinal fluid and aqueous humor formation, spermatocyte development) are modulated by carbon dioxide and/or bicarbonate. With this grant application we plan to test the hypothesis that sAC is the physiological bicarbonate/carbon dioxide sensor in biological systems.
Aim 1 will study the direct interactions of bicarbonate with purified recombinant sAC protein using enzyme kinetics, binding assays, and limited proteolysis studies.
Aim 2 will study whether bicarbonate activated sAC activity is present in bicarbonate/carbon dioxide regulated physiological systems.
Aim 3 will determine with the help of sAC knockout studies in mice whether SAC activity is essential for bicarbonate/carbon dioxide regulated physiological systems in vivo.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Physiological Chemistry Study Section (PC)
Program Officer
Somers, Scott D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Weill Medical College of Cornell University
Schools of Medicine
New York
United States
Zip Code
Rahman, Nawreen; Ramos-Espiritu, Lavoisier; Milner, Teresa A et al. (2016) Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol 148:325-39
Levin, Lonny R; Buck, Jochen (2015) Physiological roles of acid-base sensors. Annu Rev Physiol 77:347-62
Watson, Richard L; Buck, Jochen; Levin, Lonny R et al. (2015) Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration. J Exp Med 212:1021-41
Hess, Kenneth C; Liu, Jingjing; Manfredi, Giovanni et al. (2014) A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. FASEB J 28:4369-80
Kleinboelting, Silke; Diaz, Ana; Moniot, Sebastien et al. (2014) Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. Proc Natl Acad Sci U S A 111:3727-32
Bitterman, Jacob L; Ramos-Espiritu, Lavoisier; Diaz, Ana et al. (2013) Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther 347:589-98
Wertheimer, Eva; Krapf, Dario; de la Vega-Beltran, José L et al. (2013) Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J Biol Chem 288:35307-20
Chen, Jonathan; Martinez, Jennifer; Milner, Teresa A et al. (2013) Neuronal expression of soluble adenylyl cyclase in the mammalian brain. Brain Res 1518:1-8
Zippin, Jonathan H; Chen, Yanqiu; Straub, Susanne G et al. (2013) CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288:33283-91
Valsecchi, Federica; Ramos-Espiritu, Lavoisier S; Buck, Jochen et al. (2013) cAMP and mitochondria. Physiology (Bethesda) 28:199-209

Showing the most recent 10 out of 43 publications